TY - GEN
T1 - A PSPACE construction of a hitting set for the closure of small algebraic circuits
AU - Forbes, Michael A.
AU - Shpilka, Amir
N1 - Publisher Copyright:
© 2018 Copyright held by the owner/author(s).
PY - 2018/6/20
Y1 - 2018/6/20
N2 - In this paper we study the complexity of constructing a hitting set for VP, the class of polynomials that can be infinitesimally approximated by polynomials that are computed by polynomial sized algebraic circuits, over the real or complex numbers. Specifically, we show that there is a PSPACE algorithm that given n, s, r in unary outputs a set of inputs from Qn of size poly(n, s, r), with poly(n, s, r) bit complexity, that hits all n-variate polynomials of degree r that are the limit of size s algebraic circuits. Previously it was known that a random set of this size is a hitting set, but a construction that is certified to work was only known in EXPSPACE (or EXPH assuming the generalized Riemann hypothesis). As a corollary we get that a host of other algebraic problems such as Noether Normalization Lemma, can also be solved in PSPACE deterministically, where earlier only randomized algorithms and EXPSPACE algorithms (or EXPH assuming the generalized Riemann hypothesis) were known. The proof relies on the new notion of a robust hitting set which is a set of inputs such that any nonzero polynomial that can be computed by a polynomial size algebraic circuit, evaluates to a not too small value on at least one element of the set. Proving the existence of such a robust hitting set is the main technical difficulty in the proof. Our proof uses anti-concentration results for polynomials, basic tools from algebraic geometry and the existential theory of the reals.
AB - In this paper we study the complexity of constructing a hitting set for VP, the class of polynomials that can be infinitesimally approximated by polynomials that are computed by polynomial sized algebraic circuits, over the real or complex numbers. Specifically, we show that there is a PSPACE algorithm that given n, s, r in unary outputs a set of inputs from Qn of size poly(n, s, r), with poly(n, s, r) bit complexity, that hits all n-variate polynomials of degree r that are the limit of size s algebraic circuits. Previously it was known that a random set of this size is a hitting set, but a construction that is certified to work was only known in EXPSPACE (or EXPH assuming the generalized Riemann hypothesis). As a corollary we get that a host of other algebraic problems such as Noether Normalization Lemma, can also be solved in PSPACE deterministically, where earlier only randomized algorithms and EXPSPACE algorithms (or EXPH assuming the generalized Riemann hypothesis) were known. The proof relies on the new notion of a robust hitting set which is a set of inputs such that any nonzero polynomial that can be computed by a polynomial size algebraic circuit, evaluates to a not too small value on at least one element of the set. Proving the existence of such a robust hitting set is the main technical difficulty in the proof. Our proof uses anti-concentration results for polynomials, basic tools from algebraic geometry and the existential theory of the reals.
KW - Algebraic circuits
KW - Arithmetic circuits
KW - Explicit construction
KW - Hitting-set
KW - PSPACE
KW - Polynomial identity testing
UR - http://www.scopus.com/inward/record.url?scp=85049921832&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85049921832&partnerID=8YFLogxK
U2 - 10.1145/3188745.3188792
DO - 10.1145/3188745.3188792
M3 - Conference contribution
AN - SCOPUS:85049921832
T3 - Proceedings of the Annual ACM Symposium on Theory of Computing
SP - 87
EP - 99
BT - STOC 2018 - Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing
A2 - Henzinger, Monika
A2 - Kempe, David
A2 - Diakonikolas, Ilias
PB - Association for Computing Machinery
T2 - 50th Annual ACM Symposium on Theory of Computing, STOC 2018
Y2 - 25 June 2018 through 29 June 2018
ER -