Abstract
Potassium (K+) is an essential macronutrient for plant growth and development. Previous studies have demonstrated that Calcineurin B-Like Protein1 (CBL1) or CBL9 and CBL-Interacting Protein Kinase23 (CIPK23) regulate K+ uptake in Arabidopsis (Arabidopsis thaliana) roots by modulating K+ channel Arabidopsis K+ Transporter1. In this study, we show that the protein kinase CIPK9 interacts with the calcium sensor CBL3 and plays crucial roles in K+ homeostasis under low-K+ stress in Arabidopsis. Arabidopsis wild-type plants showed leaf chlorotic symptoms when grown for 10 d on low-K+ (100 mM) medium. Here, we show that plants lacking CIPK9 displayed a tolerant phenotype to low-K+ stress, which still maintained green leaves when the wild-type plants showed typical K+-deficient symptoms. Overexpressing lines of CIPK9 resulted in a low-K+-sensitive phenotype compared with wild-type plants. Furthermore, CBL2 and CBL3 were identified as upstream regulators of CIPK9. Both CBL2- and CBL3-overexpressing lines displayed similar low-K+-sensitive phenotypes and K+ contents to CIPK9- overexpressing lines. However, only cbl3 mutant plants, but not cbl2 mutant plants, showed the low-K+-tolerant phenotype similar to cipk9 mutants. Taken together, these results demonstrate that CIPK9 and CBL3 work together and function in K+ homeostasis under low-K+ stress in Arabidopsis.
Original language | English (US) |
---|---|
Pages (from-to) | 266-277 |
Number of pages | 12 |
Journal | Plant physiology |
Volume | 161 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2013 |
Externally published | Yes |
ASJC Scopus subject areas
- Physiology
- Genetics
- Plant Science