A problem class with combined architecture, plant, and control design applied to vehicle suspensions

Daniel R. Herber, James T. Allison

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Here we describe a problem class with combined architecture, plant, and control design for dynamic engineering systems. The design problem class is characterized by architectures comprised of linear physical elements and nested co-design optimization problems employing linear-quadratic dynamic optimization. The select problem class leverages a number of existing theory and tools and is particularly attractive due to the symbiosis between labeled graph representations of architectures, dynamic models constructed from linear physical elements, linear-quadratic dynamic optimization, and the nested co-design solution strategy. A vehicle suspension case study is investigated and a specifically constructed architecture, plant, and control design problem is described. The result was the automated generation and co-design problem evaluation of 4,374 unique suspension architectures. The results demonstrate that changes to the vehicle suspension architecture can result in improved performance, but at the cost of increased mechanical complexity. Furthermore, the case study highlights a number of challenges associated with finding solutions to the considered class of design problems.

Original languageEnglish (US)
Title of host publication44th Design Automation Conference
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791851753
DOIs
StatePublished - 2018
EventASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2018 - Quebec City, Canada
Duration: Aug 26 2018Aug 29 2018

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume2A-2018

Other

OtherASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2018
Country/TerritoryCanada
CityQuebec City
Period8/26/188/29/18

ASJC Scopus subject areas

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'A problem class with combined architecture, plant, and control design applied to vehicle suspensions'. Together they form a unique fingerprint.

Cite this