Abstract
Alcohols, because of their potential to be produced from renewable sources and their characteristics suitable for clean combustion, are considered potential fuels which can be blended with fossil-based gasoline for use in internal combustion engines. As such, n-butanol has received a lot of attention in this regard and has shown to be a possible alternative to pure gasoline. The main issue preventing butanol's use in modern engines is its relatively high cost of production. Acetone-Butanol-Ethanol (ABE) fermentation is one of the major methods to produce bio-butanol. The goal of this study is to investigate the combustion characteristics of the intermediate product in butanol production, namely ABE, and hence evaluate its potential as an alternative fuel. Acetone, n-butanol and ethanol were blended in a 3:6:1 volume ratio and then splash blended with pure ethanol-free gasoline with volumetric ratios of 0%, 20%, 40% to create various fuel blends. These blends were tested in a port-fuel injected spark-ignited (SI) engine and their performance was evaluated through measurements of in-cylinder pressure, and various exhaust emissions. In addition, pure gasoline was also tested as a baseline for comparison of ABE fuels. The tests were conducted at an engine speed of 1500 RPM and a load of 350 kPa brake mean effective pressure (BMEP). On the basis of the experimental data, combustion characteristics for these fuels have been determined as follows: mass fraction burned (MFB) profile, rate of MFB, combustion duration and location of 50% MFB.
Original language | English (US) |
---|---|
Journal | SAE Technical Papers |
Volume | 1 |
DOIs | |
State | Published - 2014 |
Event | SAE 2014 World Congress and Exhibition - Detroit, MI, United States Duration: Apr 8 2014 → Apr 10 2014 |
Keywords
- ABE
- Acetone
- ethanol
- n-butanol
- oxygenated fuels
ASJC Scopus subject areas
- Automotive Engineering
- Safety, Risk, Reliability and Quality
- Pollution
- Industrial and Manufacturing Engineering