A power modulating leg mechanism for monopedal hopping

Duncan W. Haldane, Mark Plecnik, Justin K. Yim, Ronald S. Fearing

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

New work in robotics targets the development of controllable agile motions such as leaping. In this work, we examine animal and robotic systems on the metric of jumping agility and find that animals can outperform the most agile robots by a factor of two. These specially adapted animals use a jumping strategy we term power modulation to generate more peak power for jumping than otherwise possible. A novel eightbar revolute mechanism designed with a new linkage synthesis approach encodes the properties for power modulation as well as constraints which assure rotation-free jumping motion. We fabricate an 85 gram prototype and demonstrate that it can perform a range of jumps while constrained by a linear slide. The prototype can deliver 3.63 times more peak jumping power than the maximum its motor can produce. A simulation matched to the physical parameters of the prototype predicts that the robot can attain an agility exceeding that of the most agile animals if the actuator power is increased to 15W.

Original languageEnglish (US)
Title of host publicationIROS 2016 - 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4757-4764
Number of pages8
ISBN (Electronic)9781509037629
DOIs
StatePublished - Nov 28 2016
Externally publishedYes
Event2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016 - Daejeon, Korea, Republic of
Duration: Oct 9 2016Oct 14 2016

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2016-November
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Other

Other2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016
Country/TerritoryKorea, Republic of
CityDaejeon
Period10/9/1610/14/16

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'A power modulating leg mechanism for monopedal hopping'. Together they form a unique fingerprint.

Cite this