A Polish group without Lie sums

Research output: Contribution to journalArticle

Abstract

We construct a Polish group with an invariant metric in which Lie sums and Lie brackets do not exist. The construction of the group and the proof of the main theorem use some facts of combinatorial nature about the free group with two generators equipped with a Graev metric.

Original languageEnglish (US)
Pages (from-to)135-147
Number of pages13
JournalAbhandlungen aus dem Mathematischen Seminar der Universitat Hamburg
Volume79
Issue number1
DOIs
StatePublished - Jun 1 2009

Fingerprint

Polish Group
Lie Brackets
Invariant Metric
Free Group
Generator
Metric
Theorem

Keywords

  • Graev metric
  • Lie bracket
  • Lie sum
  • Polish group

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

A Polish group without Lie sums. / van den Dries, Lou; Gao, Su.

In: Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, Vol. 79, No. 1, 01.06.2009, p. 135-147.

Research output: Contribution to journalArticle

@article{06744ef01b504f3ca299daf28fa80185,
title = "A Polish group without Lie sums",
abstract = "We construct a Polish group with an invariant metric in which Lie sums and Lie brackets do not exist. The construction of the group and the proof of the main theorem use some facts of combinatorial nature about the free group with two generators equipped with a Graev metric.",
keywords = "Graev metric, Lie bracket, Lie sum, Polish group",
author = "{van den Dries}, Lou and Su Gao",
year = "2009",
month = "6",
day = "1",
doi = "10.1007/s12188-009-0019-y",
language = "English (US)",
volume = "79",
pages = "135--147",
journal = "Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg",
issn = "0025-5858",
publisher = "Springer Verlag",
number = "1",

}

TY - JOUR

T1 - A Polish group without Lie sums

AU - van den Dries, Lou

AU - Gao, Su

PY - 2009/6/1

Y1 - 2009/6/1

N2 - We construct a Polish group with an invariant metric in which Lie sums and Lie brackets do not exist. The construction of the group and the proof of the main theorem use some facts of combinatorial nature about the free group with two generators equipped with a Graev metric.

AB - We construct a Polish group with an invariant metric in which Lie sums and Lie brackets do not exist. The construction of the group and the proof of the main theorem use some facts of combinatorial nature about the free group with two generators equipped with a Graev metric.

KW - Graev metric

KW - Lie bracket

KW - Lie sum

KW - Polish group

UR - http://www.scopus.com/inward/record.url?scp=67349273081&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=67349273081&partnerID=8YFLogxK

U2 - 10.1007/s12188-009-0019-y

DO - 10.1007/s12188-009-0019-y

M3 - Article

AN - SCOPUS:67349273081

VL - 79

SP - 135

EP - 147

JO - Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg

JF - Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg

SN - 0025-5858

IS - 1

ER -