A novel mobile-cloud system for capturing and analyzing wheelchair maneuvering data: A pilot study

Jicheng Fu, Maria Jones, Tao Liu, Wei Hao, Yuqing Yan, Gang Qian, Yih Kuen Jan

Research output: Contribution to journalArticlepeer-review


The purpose of this pilot study was to provide a new approach for capturing and analyzing wheelchair maneuvering data, which are critical for evaluating wheelchair users’ activity levels. We proposed a mobile-cloud (MC) system, which incorporated the emerging mobile and cloud computing technologies. The MC system employed smartphone sensors to collect wheelchair maneuvering data and transmit them to the cloud for storage and analysis. A k-nearest neighbor (KNN) machine-learning algorithm was developed to mitigate the impact of sensor noise and recognize wheelchair maneuvering patterns. We conducted 30 trials in an indoor setting, where each trial contained 10 bouts (i.e., periods of continuous wheelchair movement). We also verified our approach in a different building. Different from existing approaches that require sensors to be attached to wheelchairs’ wheels, we placed the smartphone into a smartphone holder attached to the wheelchair. Experimental results illustrate that our approach correctly identified all 300 bouts. Compared to existing approaches, our approach was easier to use while achieving similar accuracy in analyzing the accumulated movement time and maximum period of continuous movement (p > 0.8). Overall, the MC system provided a feasible way to ease the data collection process and generated accurate analysis results for evaluating activity levels.

Original languageEnglish (US)
Pages (from-to)105-114
Number of pages10
JournalAssistive Technology
Issue number2
StatePublished - Apr 2 2016


  • Android
  • Google App Engine
  • activity level
  • cloud computing
  • mobile computing
  • wheelchair maneuver

ASJC Scopus subject areas

  • Physical Therapy, Sports Therapy and Rehabilitation
  • Rehabilitation


Dive into the research topics of 'A novel mobile-cloud system for capturing and analyzing wheelchair maneuvering data: A pilot study'. Together they form a unique fingerprint.

Cite this