TY - JOUR
T1 - A note on harmonic subgraphs in labelled geometric graphs
AU - Araujo, G.
AU - Balogh, J.
AU - Fabila, R.
AU - Salazar, G.
AU - Urrutia, J.
N1 - Funding Information:
* Corresponding author. E-mail addresses: garaujo@matem.unam.mx (G. Araujo), jobal@math.uiuc.edu (J. Balogh), ruy@ciencias.unam.mx (R. Fabila), gsalazar@ifisica.uaslp.mx (G. Salazar), urrutia@matem.unam.mx (J. Urrutia). 1 Supported by Grant PAPIIT IN106305-3. 2 Supported by NSF Grant DMS-0302804. 3 Supported by FAI-UASLP and by CONACYT Grant 45903. 4 Supported by CONACYT Grant 45876.
PY - 2008/1/31
Y1 - 2008/1/31
N2 - Let S be a set of n points in general position in the plane, labelled bijectively with the integers {0, 1, ..., n - 1}. Each edge (the straight segment that joins two points) is labelled with the sum of the labels of its endpoints. In this note we investigate the maximum size of noncrossing matchings and paths on S, under the requirement that no two edges have the same weight.
AB - Let S be a set of n points in general position in the plane, labelled bijectively with the integers {0, 1, ..., n - 1}. Each edge (the straight segment that joins two points) is labelled with the sum of the labels of its endpoints. In this note we investigate the maximum size of noncrossing matchings and paths on S, under the requirement that no two edges have the same weight.
KW - Computational geometry
KW - Graceful labellings
KW - Harmonic subgraphs
UR - http://www.scopus.com/inward/record.url?scp=36549023878&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=36549023878&partnerID=8YFLogxK
U2 - 10.1016/j.ipl.2007.08.016
DO - 10.1016/j.ipl.2007.08.016
M3 - Article
AN - SCOPUS:36549023878
VL - 105
SP - 98
EP - 102
JO - Information Processing Letters
JF - Information Processing Letters
SN - 0020-0190
IS - 3
ER -