A nonlinear normal mode approach for studying waves in nonlinear monocoupled periodic systems

A. F. Vakakis, M. E. King

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The free dynamics of a mono-coupled layered nonlinear periodic system of infinite extent is analyzed. It is shown that, in analogy to linear theory, the system possesses nonlinear attenuation and propagation zones (AZs and PZs) in the frequency domain. Responses in AZs correspond to standing waves with spatially attenuating, or expanding envelopes, and are synchronous motions of all points of the periodic system. These motions are analytically examined by employing the notion of "nonlinear normal mode," thereby reducing the response problem to the solution of an infinite set of singular nonlinear partial differential equations. An asymptotic methodology is developed to solve this set. Numerical computations are carried out to complement the analytical findings. The methodology developed in this work can be extended to investigate synchronous attenuating motions of multi-coupled nonlinear periodic systems.

Original languageEnglish (US)
Title of host publication15th Biennial Conference on Mechanical Vibration and Noise - Vibration of Nonlinear, Random, and Time-Varying Systems
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages825-832
Number of pages8
ISBN (Electronic)9780791817186
DOIs
StatePublished - 1995
Externally publishedYes
EventASME 1995 Design Engineering Technical Conferences, DETC 1995, collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium - Boston, United States
Duration: Sep 17 1995Sep 20 1995

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume3A-1995

Conference

ConferenceASME 1995 Design Engineering Technical Conferences, DETC 1995, collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium
Country/TerritoryUnited States
CityBoston
Period9/17/959/20/95

ASJC Scopus subject areas

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'A nonlinear normal mode approach for studying waves in nonlinear monocoupled periodic systems'. Together they form a unique fingerprint.

Cite this