A new zero-free region for Rankin-Selberg L-functions

Gergely Harcos, Jesse Thorner

Research output: Contribution to journalArticlepeer-review

Abstract

Let π and π' be cuspidal automorphic representations of GL(n) and GL(n') with unitary central characters. We establish a new zero-free region for all GL(1)-twists of the Rankin-Selberg L-function L(s, π × π'), generalizing Siegel's celebrated work on Dirichlet L-functions. As an application, we prove the first unconditional Siegel-Walfisz theorem for the Dirichlet coefficients of -L'(s, π × π')/L(s, π × π'). Also, for n ≤ 8, we extend the region of holomorphy and nonvanishing for the twisted symmetric power L-functions L(s, π, Symn ⊗χ) of any cuspidal automorphic representation of GL(2).

Original languageEnglish (US)
Pages (from-to)179-201
Number of pages23
JournalJournal fur die Reine und Angewandte Mathematik
Volume2025
Issue number822
Early online dateMar 22 2025
DOIs
StateE-pub ahead of print - Mar 22 2025

ASJC Scopus subject areas

  • General Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'A new zero-free region for Rankin-Selberg L-functions'. Together they form a unique fingerprint.

Cite this