TY - JOUR
T1 - A new zero-free region for Rankin-Selberg L-functions
AU - Harcos, Gergely
AU - Thorner, Jesse
N1 - The first author was supported by the MTA-HUN-REN RI Lend\u00FClet Automorphic Research Group and NKFIH (National Research, Development and Innovation Office) grant K 143876. The second author was partially supported by the National Science Foundation (DMS-2401311) and the Simons Foundation (MP-TSM-00002484). We thank Erez Lapid, Paul Nelson, and the anonymous referee for their helpful remarks.
PY - 2025/3/22
Y1 - 2025/3/22
N2 - Let π and π' be cuspidal automorphic representations of GL(n) and GL(n') with unitary central characters. We establish a new zero-free region for all GL(1)-twists of the Rankin-Selberg L-function L(s, π × π'), generalizing Siegel's celebrated work on Dirichlet L-functions. As an application, we prove the first unconditional Siegel-Walfisz theorem for the Dirichlet coefficients of -L'(s, π × π')/L(s, π × π'). Also, for n ≤ 8, we extend the region of holomorphy and nonvanishing for the twisted symmetric power L-functions L(s, π, Symn ⊗χ) of any cuspidal automorphic representation of GL(2).
AB - Let π and π' be cuspidal automorphic representations of GL(n) and GL(n') with unitary central characters. We establish a new zero-free region for all GL(1)-twists of the Rankin-Selberg L-function L(s, π × π'), generalizing Siegel's celebrated work on Dirichlet L-functions. As an application, we prove the first unconditional Siegel-Walfisz theorem for the Dirichlet coefficients of -L'(s, π × π')/L(s, π × π'). Also, for n ≤ 8, we extend the region of holomorphy and nonvanishing for the twisted symmetric power L-functions L(s, π, Symn ⊗χ) of any cuspidal automorphic representation of GL(2).
UR - http://www.scopus.com/inward/record.url?scp=105001192202&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105001192202&partnerID=8YFLogxK
U2 - 10.1515/crelle-2025-0009
DO - 10.1515/crelle-2025-0009
M3 - Article
AN - SCOPUS:105001192202
SN - 0075-4102
VL - 2025
SP - 179
EP - 201
JO - Journal fur die Reine und Angewandte Mathematik
JF - Journal fur die Reine und Angewandte Mathematik
IS - 822
ER -