A neural network alternative to non-negative audio models

Paris Smaragdis, Shrikant Venkataramani

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We present a neural network that can act as an equivalent to a Non-Negative Matrix Factorization (NMF), and further show how it can be used to perform supervised source separation. Due to the extensibility of this approach we show how we can achieve better source separation performance as compared to NMF-based methods, and propose a variety of derivative architectures that can be used for further improvements.

Original languageEnglish (US)
Title of host publication2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages86-90
Number of pages5
ISBN (Electronic)9781509041176
DOIs
StatePublished - Jun 16 2017
Event2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - New Orleans, United States
Duration: Mar 5 2017Mar 9 2017

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Other

Other2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017
Country/TerritoryUnited States
CityNew Orleans
Period3/5/173/9/17

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A neural network alternative to non-negative audio models'. Together they form a unique fingerprint.

Cite this