A network model for prediction and diagnosis of sediment dynamics at the watershed scale

Sopan Patil, Murugesu Sivapalan, Marwan A. Hassan, Sheng Ye, Ciaran J. Harman, Xiangyu Xu

Research output: Contribution to journalArticlepeer-review

Abstract

We present a semi-distributed model that simulates suspended sediment export from a watershed in two stages: (1) delivery of sediments from hillslope and bank erosion into the river channel, and (2) propagation of the channel sediments through the river network toward the watershed outlet. The model conceptualizes a watershed as the collection of reaches, or representative elementary watersheds (REW), that are connected to each other through the river network, and each REW comprises a lumped representation of a hillslope and channel component. The flow of water along the stream network is modeled through coupled mass and momentum balance equations applied in all REWs and sediment transport within each REW is simulated through the sediment balance equations. Every reach receives sediment inputs from upstream REWs (if present) and from the erosion of adjacent hillslopes, banks and channel bed. We tested this model using 12 years (1982-1993) of high temporal resolution data from Goodwin Creek, a 21.3 km2 watershed in Mississippi, USA. The model yields good estimates of sediment export patterns at the watershed outlet, with Pearson correlation coefficient (R value) of 0.85, 0.87, and 0.95 at daily, monthly, and annual resolution, respectively. Furthermore, the model shows that the dynamics of sediment transport are controlled to a large extent by the differences in the behavior of coarse and fine sediment particles, temporary channel storage, and the spatial variability in climatic forcing. These processes have a bearing on the patterns of sediment delivery with increasing scale.

Original languageEnglish (US)
Article numberF00A04
JournalJournal of Geophysical Research F: Earth Surface
Volume117
Issue number4
DOIs
StatePublished - Dec 1 2012

ASJC Scopus subject areas

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint Dive into the research topics of 'A network model for prediction and diagnosis of sediment dynamics at the watershed scale'. Together they form a unique fingerprint.

Cite this