A network flow method for improved MR field map estimation in the presence of water and fat

D. Hernando, P. Kellman, J. P. Haldar, Z. P. Liang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Field map estimation is an important problem in MRI, with applications such as water/fat separation and correction of fast acquisitions. However, it constitutes a nonlinear and severely ill-posed problem requiring regularization. In this paper, we introduce an improved method for regularized field map estimation, based on a statistically motivated formulation, as well as a novel algorithm for the solution of the corresponding optimization problem using a network flow approach. The proposed method provides theoretical guarantees (local optimality with respect to a large move), as well as an efficient implementation. It has been applied to the water/fat separation problem and tested on a number of challenging datasets, showing high-quality results.

Original languageEnglish (US)
Title of host publicationProceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08
PublisherIEEE Computer Society
Pages82-85
Number of pages4
ISBN (Print)9781424418152
DOIs
StatePublished - 2008
Event30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08 - Vancouver, BC, Canada
Duration: Aug 20 2008Aug 25 2008

Publication series

NameProceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08 - "Personalized Healthcare through Technology"

Other

Other30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08
Country/TerritoryCanada
CityVancouver, BC
Period8/20/088/25/08

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics

Fingerprint

Dive into the research topics of 'A network flow method for improved MR field map estimation in the presence of water and fat'. Together they form a unique fingerprint.

Cite this