A nested extreme response surface approach for time-dependent reliability-based design optimization

Zequn Wang, Pingfeng Wang

Research output: Contribution to journalArticlepeer-review

Abstract

A primary concern in practical engineering design is ensuring high system reliability throughout a product's lifecycle, which is subject to time-variant operating conditions and component deteriorations. Thus, the capability of dealing with time-dependent probabilistic constraints in reliability-based design optimization (RBDO) is of vital importance in practical engineering design applications. This paper presents a nested extreme response surface (NERS) approach to efficiently carry out time-dependent reliability analysis and determine the optimal designs. This approach employs the kriging model to build a nested response surface of time corresponding to the extreme value of the limit state function. The efficient global optimization (EGO) technique is integrated with the NERS approach to extract the extreme time responses of the limit state function for any given system design. An adaptive response prediction and model maturation (ARPMM) mechanism is developed based on the mean square error (MSE) to concurrently improve the accuracy and computational efficiency of the proposed approach. With the nested response surface of time, the time-dependent reliability analysis can be converted into the time-independent reliability analysis, and existing advanced reliability analysis and design methods can be used. The NERS approach is compared with existing time-dependent reliability analysis approaches and integrated with RBDO for engineered system design with time-dependent probabilistic constraints. Two case studies are used to demonstrate the efficacy of the proposed NERS approach.

Original languageEnglish (US)
Article number121007
JournalJournal of Mechanical Design, Transactions of the ASME
Volume134
Issue number12
DOIs
StatePublished - 2012
Externally publishedYes

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint Dive into the research topics of 'A nested extreme response surface approach for time-dependent reliability-based design optimization'. Together they form a unique fingerprint.

Cite this