A Multiscale Homogenization Approach for Architectured Knitted Textiles

Dani Liu, Seid Koric, Antonios Kontsos

Research output: Contribution to journalArticlepeer-review


As a type of architectured material, knitted textiles exhibit global mechanical behavior which is affected by their microstructure defined at the scale at which yarns are arranged topologically given the type of textile manufactured. To relate local geometrical, interfacial, material, kinematic and kinetic properties to global mechanical behavior, a first order, two-scale homogenization scheme was developed and applied in this investigation. In this approach, the equivalent stress at the far field and the consistent material stiffness are explicitly derived from the microstructure. In addition, the macrofield is linked to the microstructural propertiers by a user subroutine which can compute stresses and stiffness in a looped finite element code. This multi-scale homogenization scheme is computationally efficient and capable of predicting the mechanical behavior at the macroscopic level while accounting direclty for the deformation-induced evolution of the underlying microstructure.
Original languageEnglish (US)
Pages (from-to)1-27
JournalJournal of Applied Mechanics, Transactions ASME
StateAccepted/In press - Jun 13 2019

Fingerprint Dive into the research topics of 'A Multiscale Homogenization Approach for Architectured Knitted Textiles'. Together they form a unique fingerprint.

Cite this