A Multimodal Misinformation Detector for COVID-19 Short Videos on TikTok

Lanyu Shang, Ziyi Kou, Yang Zhang, Dong Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper studies an emerging and important problem of identifying misleading COVID-19 short videos where the misleading content is jointly expressed in the visual, audio, and textual content of videos. Existing solutions for misleading video detection mainly focus on the authenticity of videos or audios against AI algorithms (e.g., deepfake) or video manipulation, and are insufficient to address our problem where most videos are user-generated and intentionally edited. Two critical challenges exist in solving our problem: i) how to effectively extract information from the distractive and manipulated visual content in TikTok videos? ii) How to efficiently aggregate heterogeneous information across different modalities in short videos? To address the above challenges, we develop TikTec, a multimodal misinformation detection framework that explicitly exploits the captions to accurately capture the key information from the distractive video content, and effectively learns the composed misinformation that is jointly conveyed by the visual and audio content. We evaluate TikTec on a real-world COVID- 19 video dataset collected from TikTok. Evaluation results show that TikTec achieves significant performance gains compared to state-of-the-art baselines in accurately detecting misleading COVID-19 short videos.

Original languageEnglish (US)
Title of host publicationProceedings - 2021 IEEE International Conference on Big Data, Big Data 2021
EditorsYixin Chen, Heiko Ludwig, Yicheng Tu, Usama Fayyad, Xingquan Zhu, Xiaohua Tony Hu, Suren Byna, Xiong Liu, Jianping Zhang, Shirui Pan, Vagelis Papalexakis, Jianwu Wang, Alfredo Cuzzocrea, Carlos Ordonez
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages899-908
Number of pages10
ISBN (Electronic)9781665439022
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Big Data, Big Data 2021 - Virtual, Online, United States
Duration: Dec 15 2021Dec 18 2021

Publication series

NameProceedings - 2021 IEEE International Conference on Big Data, Big Data 2021

Conference

Conference2021 IEEE International Conference on Big Data, Big Data 2021
Country/TerritoryUnited States
CityVirtual, Online
Period12/15/2112/18/21

ASJC Scopus subject areas

  • Information Systems and Management
  • Artificial Intelligence
  • Computer Vision and Pattern Recognition
  • Information Systems

Fingerprint

Dive into the research topics of 'A Multimodal Misinformation Detector for COVID-19 Short Videos on TikTok'. Together they form a unique fingerprint.

Cite this