TY - GEN
T1 - A Multimodal Misinformation Detector for COVID-19 Short Videos on TikTok
AU - Shang, Lanyu
AU - Kou, Ziyi
AU - Zhang, Yang
AU - Wang, Dong
N1 - This research is supported in part by the National Science Foundation under Grant No. CHE-2105032, IIS-2008228, CNS-1845639, CNS-1831669. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation here on.
PY - 2021
Y1 - 2021
N2 - This paper studies an emerging and important problem of identifying misleading COVID-19 short videos where the misleading content is jointly expressed in the visual, audio, and textual content of videos. Existing solutions for misleading video detection mainly focus on the authenticity of videos or audios against AI algorithms (e.g., deepfake) or video manipulation, and are insufficient to address our problem where most videos are user-generated and intentionally edited. Two critical challenges exist in solving our problem: i) how to effectively extract information from the distractive and manipulated visual content in TikTok videos? ii) How to efficiently aggregate heterogeneous information across different modalities in short videos? To address the above challenges, we develop TikTec, a multimodal misinformation detection framework that explicitly exploits the captions to accurately capture the key information from the distractive video content, and effectively learns the composed misinformation that is jointly conveyed by the visual and audio content. We evaluate TikTec on a real-world COVID- 19 video dataset collected from TikTok. Evaluation results show that TikTec achieves significant performance gains compared to state-of-the-art baselines in accurately detecting misleading COVID-19 short videos.
AB - This paper studies an emerging and important problem of identifying misleading COVID-19 short videos where the misleading content is jointly expressed in the visual, audio, and textual content of videos. Existing solutions for misleading video detection mainly focus on the authenticity of videos or audios against AI algorithms (e.g., deepfake) or video manipulation, and are insufficient to address our problem where most videos are user-generated and intentionally edited. Two critical challenges exist in solving our problem: i) how to effectively extract information from the distractive and manipulated visual content in TikTok videos? ii) How to efficiently aggregate heterogeneous information across different modalities in short videos? To address the above challenges, we develop TikTec, a multimodal misinformation detection framework that explicitly exploits the captions to accurately capture the key information from the distractive video content, and effectively learns the composed misinformation that is jointly conveyed by the visual and audio content. We evaluate TikTec on a real-world COVID- 19 video dataset collected from TikTok. Evaluation results show that TikTec achieves significant performance gains compared to state-of-the-art baselines in accurately detecting misleading COVID-19 short videos.
UR - http://www.scopus.com/inward/record.url?scp=85125033115&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85125033115&partnerID=8YFLogxK
U2 - 10.1109/BigData52589.2021.9671928
DO - 10.1109/BigData52589.2021.9671928
M3 - Conference contribution
AN - SCOPUS:85125033115
T3 - Proceedings - 2021 IEEE International Conference on Big Data, Big Data 2021
SP - 899
EP - 908
BT - Proceedings - 2021 IEEE International Conference on Big Data, Big Data 2021
A2 - Chen, Yixin
A2 - Ludwig, Heiko
A2 - Tu, Yicheng
A2 - Fayyad, Usama
A2 - Zhu, Xingquan
A2 - Hu, Xiaohua Tony
A2 - Byna, Suren
A2 - Liu, Xiong
A2 - Zhang, Jianping
A2 - Pan, Shirui
A2 - Papalexakis, Vagelis
A2 - Wang, Jianwu
A2 - Cuzzocrea, Alfredo
A2 - Ordonez, Carlos
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2021 IEEE International Conference on Big Data, Big Data 2021
Y2 - 15 December 2021 through 18 December 2021
ER -