A modular adversarial approach to social recommendation

Adit Krishnan, Hari Cheruvu, Cheng Tao, Hari Sundaram

Research output: Chapter in Book/Report/Conference proceedingConference contribution


This paper proposes a novel framework to incorporate social regularization for item recommendation. Social regularization grounded in ideas of homophily and influence appears to capture latent user preferences. However, there are two key challenges: first, the importance of a specific social link depends on the context and second, a fundamental result states that we cannot disentangle homophily and influence from observational data to determine the effect of social inference. Thus we view the attribution problem as inherently adversarial where we examine two competing hypothesis-social influence and latent interests-to explain each purchase decision. We make two contributions. First, we propose a modular, adversarial framework that decouples the architectural choices for the recommender and social representation models, for social regularization. Second, we overcome degenerate solutions through an intuitive contextual weighting strategy, that supports an expressive attribution, to ensure informative social associations play a larger role in regularizing the learned user interest space. Our results indicate significant gains (5-10% relative Recall@K) over state-of-the-art baselines across multiple publicly available datasets.

Original languageEnglish (US)
Title of host publicationCIKM 2019 - Proceedings of the 28th ACM International Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Number of pages10
ISBN (Electronic)9781450369763
StatePublished - Nov 3 2019
Event28th ACM International Conference on Information and Knowledge Management, CIKM 2019 - Beijing, China
Duration: Nov 3 2019Nov 7 2019

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings


Conference28th ACM International Conference on Information and Knowledge Management, CIKM 2019


  • Adversarial Machine Learning
  • Generative Adversarial Networks
  • Neural Collaborative Filtering
  • Social Recommendation

ASJC Scopus subject areas

  • General Decision Sciences
  • General Business, Management and Accounting


Dive into the research topics of 'A modular adversarial approach to social recommendation'. Together they form a unique fingerprint.

Cite this