A model predictive framework for thermal management of aircraft

Timothy O. Deppen, Joel E. Hey, Andrew G. Alleyne, Timothy S. Fisher

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The challenge of managing heat dissipation and enforcing operational constraints on temperature within a highperformance tactical aircraft is considered. For these systems, power density of the electrical equipment and the associated thermal loads are quickly outpacing the means of conventional thermal management systems (TMS) to provide on-demand cooling and in order to prevent thermal run away. The next generation of tactical aircraft is projected to include an order of magnitude greater thermal and electrical power magnitudes, and the time scale over which thermal loads will change is expected to shrink. To meet this rapidly evolving challenge, designing a TMS for the "worst case" scenario based on a steady-state thermal analysis will be infeasible. Rather, a holistic systems perspective is needed with new control methodologies that capture and even exploit the transient thermal behavior. To this end, a model predictive control strategy is presented that utilizes preview of upcoming loads and disturbances to prevent violation of temperature constraints. A simulation case study demonstrates that the predictive thermal controller can dramatically reduce constraint violations while reducing the work required by the TMS when compared to a cascaded PI feedback controller.

Original languageEnglish (US)
Title of host publicationAdaptive and Intelligent Systems Control; Advances in Control Design Methods; Advances in Non-Linear and Optimal Control; Advances in Robotics; Advances in Wind Energy Systems; Aerospace Applications; Aerospace Power Optimization; Assistive Robotics; Automotive 2
Subtitle of host publicationHybrid Electric Vehicles; Automotive 3: Internal Combustion Engines; Automotive Engine Control; Battery Management; Bio Engineering Applications; Biomed and Neural Systems; Connected Vehicles; Control of Robotic Systems
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791857243
DOIs
StatePublished - 2015
EventASME 2015 Dynamic Systems and Control Conference, DSCC 2015 - Columbus, United States
Duration: Oct 28 2015Oct 30 2015

Publication series

NameASME 2015 Dynamic Systems and Control Conference, DSCC 2015
Volume1

Other

OtherASME 2015 Dynamic Systems and Control Conference, DSCC 2015
Country/TerritoryUnited States
CityColumbus
Period10/28/1510/30/15

ASJC Scopus subject areas

  • Industrial and Manufacturing Engineering
  • Mechanical Engineering
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'A model predictive framework for thermal management of aircraft'. Together they form a unique fingerprint.

Cite this