A mixed-effects estimating equation approach to nonignorable missing longitudinal data with Refreshment samples

Xuan Bi, Annie Qu

Research output: Contribution to journalArticle

Abstract

Nonignorable missing data occur frequently in longitudinal studies and can cause biased estimations. Refreshment samples which draw new subjects randomly in subsequent waves from the original population could mitigate the bias. In this paper, we introduce a mixed-effects estimating equation approach that enables one to incorporate refreshment samples and recover informative missing information from the measurement process. We show that the proposed method achieves consistency and asymptotic normality for fixed-effect estimation under shared-parameter models, and we extend it to a more general nonignorable-missing framework. Our finite sample simulation studies show the effectiveness and robustness of the proposed method under different missing mechanisms. In addition, we apply our method to election poll longitudinal survey data with refreshment samples from the 2007-2008 Associated Press-Yahoo! News.

Original languageEnglish (US)
Pages (from-to)1653-1675
Number of pages23
JournalStatistica Sinica
Volume28
Issue number4
DOIs
StatePublished - Oct 2018

Keywords

  • Missing not at random
  • Non-monotone missing pattern
  • Quadratic inference function
  • Shared-parameter model
  • Survey data

ASJC Scopus subject areas

  • Statistics and Probability
  • Statistics, Probability and Uncertainty

Fingerprint Dive into the research topics of 'A mixed-effects estimating equation approach to nonignorable missing longitudinal data with Refreshment samples'. Together they form a unique fingerprint.

  • Cite this