TY - GEN
T1 - A metameric crawling robot enabled by origami and smart materials
AU - Angatkina, Oyuna
AU - Chien, Brian
AU - Pagano, Alexander
AU - Yan, Tongxi
AU - Alleyne, Andrew
AU - Wissa, Aimy
AU - Tawfick, Sameh
N1 - Publisher Copyright:
Copyright © 2017 ASME.
PY - 2017
Y1 - 2017
N2 - Metamerism, in biology, occurs when a creature has multiple segments, which are similar in structure and configured in series. True metamerism means that these connected segments include a repetition of all organs and muscle tissues. Earthworms are examples of true metameric creatures. Animals use metameric structures to increase maneuverability and enable multiple modes (gaits) of locomotion along with other functions. This work presents the design of a crawling robot that is inspired by the crawling gait and true metamerism of earthworms. The building block of each segment is a bistable origami structure that extends and contracts its length. The robot moves forward by using directional friction on its feet to enable forward motion and turning. [1].Using a series of connected origami building blocks provides the robot with a modular metameric structure. This paper presents a true metameric robot design where different segments can be detached and reattached to one another but remain fully functional in each state. The docking system uses shape memory alloy (SMA) wire coils as actuators for a clutching mechanism to disengage the different segments. A directional magnetic arrangement is used to reattach the segments. The actuation architecture exploits the bistability of the origami building blocks to improve the power efficiency of the robot. Future work includes implementing a control algorithm to plan the paths of the different segments and allow for autonomous segmentation and docking in various operational environments.
AB - Metamerism, in biology, occurs when a creature has multiple segments, which are similar in structure and configured in series. True metamerism means that these connected segments include a repetition of all organs and muscle tissues. Earthworms are examples of true metameric creatures. Animals use metameric structures to increase maneuverability and enable multiple modes (gaits) of locomotion along with other functions. This work presents the design of a crawling robot that is inspired by the crawling gait and true metamerism of earthworms. The building block of each segment is a bistable origami structure that extends and contracts its length. The robot moves forward by using directional friction on its feet to enable forward motion and turning. [1].Using a series of connected origami building blocks provides the robot with a modular metameric structure. This paper presents a true metameric robot design where different segments can be detached and reattached to one another but remain fully functional in each state. The docking system uses shape memory alloy (SMA) wire coils as actuators for a clutching mechanism to disengage the different segments. A directional magnetic arrangement is used to reattach the segments. The actuation architecture exploits the bistability of the origami building blocks to improve the power efficiency of the robot. Future work includes implementing a control algorithm to plan the paths of the different segments and allow for autonomous segmentation and docking in various operational environments.
UR - http://www.scopus.com/inward/record.url?scp=85035761439&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85035761439&partnerID=8YFLogxK
U2 - 10.1115/SMASIS2017-3836
DO - 10.1115/SMASIS2017-3836
M3 - Conference contribution
AN - SCOPUS:85035761439
T3 - ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2017
BT - Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies
PB - American Society of Mechanical Engineers
T2 - ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2017
Y2 - 18 September 2017 through 20 September 2017
ER -