A magnetar engine for short GRBs and kilonovae

Philipp Mösta, David Radice, Roland Haas, Erik Schnetter, Sebastiano Bernuzzi

Research output: Contribution to journalArticlepeer-review


We investigate the influence of magnetic fields on the evolution of binary neutron star (BNS) merger remnants via three-dimensional (3D) dynamical-spacetime general-relativistic magnetohydrodynamic (MHD) simulations. We evolve a post-merger remnant with an initial poloidal magnetic field, resolve the magnetoturbulence driven by shear flows, and include a microphysical finite-temperature equation of state. A neutrino leakage scheme that captures the overall energetics and lepton number exchange is also included. We find that turbulence induced by the magnetorotational instability in the hypermassive neutron star (HMNS) amplifies magnetic field to beyond magnetar strength (1015 G). The ultra-strong toroidal field is able to launch a relativistic jet from the HMNS. We also find a magnetized wind that ejects neutron-rich material with a rate of Mej ≃ 1 × 10-1M⊙ s- 1. The total ejecta mass in our simulation is 5 ×10-3Me. This makes the ejecta from the HMNS an important component in BNS mergers and a promising source of r-process elements that can power a kilonova. The jet from the HMNS reaches a terminal Lorentz factor of ∼5 in our highest-resolution simulation. The formation of this jet is aided by neutrino cooling preventing the accretion disk from protruding into the polar region. As neutrino pair-annihilation and radiative processes in the jet (which were not included in the simulations) will boost the Lorentz factor in the jet further, our simulations demonstrate that magnetars formed in BNS mergers are a viable engine for short gamma-ray bursts.

Original languageEnglish (US)
JournalAstrophysical Journal Letters
Issue number2
StatePublished - Oct 1 2020


  • Astrophysical fluid dynamics (101)
  • General relativity (641)
  • High energy astrophysics (739)
  • Jets (870)
  • Magnetohydrodynamics (1964)

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'A magnetar engine for short GRBs and kilonovae'. Together they form a unique fingerprint.

Cite this