A machine learning framework for the quantification of the uncertainties associated with ab-initio based modeling of non-equilibrium flows

Simone Venturi, Maitreyee Sharma, Marco Panesi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Original languageEnglish (US)
Title of host publicationAIAA Scitech 2019 Forum
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624105784
DOIs
StatePublished - Jan 1 2019
EventAIAA Scitech Forum, 2019 - San Diego, United States
Duration: Jan 7 2019Jan 11 2019

Publication series

NameAIAA Scitech 2019 Forum

Conference

ConferenceAIAA Scitech Forum, 2019
CountryUnited States
CitySan Diego
Period1/7/191/11/19

Fingerprint

Learning systems
Uncertainty

ASJC Scopus subject areas

  • Aerospace Engineering

Cite this

Venturi, S., Sharma, M., & Panesi, M. (2019). A machine learning framework for the quantification of the uncertainties associated with ab-initio based modeling of non-equilibrium flows. In AIAA Scitech 2019 Forum (AIAA Scitech 2019 Forum). American Institute of Aeronautics and Astronautics Inc, AIAA. https://doi.org/10.2514/6.2019-0788

A machine learning framework for the quantification of the uncertainties associated with ab-initio based modeling of non-equilibrium flows. / Venturi, Simone; Sharma, Maitreyee; Panesi, Marco.

AIAA Scitech 2019 Forum. American Institute of Aeronautics and Astronautics Inc, AIAA, 2019. (AIAA Scitech 2019 Forum).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Venturi, S, Sharma, M & Panesi, M 2019, A machine learning framework for the quantification of the uncertainties associated with ab-initio based modeling of non-equilibrium flows. in AIAA Scitech 2019 Forum. AIAA Scitech 2019 Forum, American Institute of Aeronautics and Astronautics Inc, AIAA, AIAA Scitech Forum, 2019, San Diego, United States, 1/7/19. https://doi.org/10.2514/6.2019-0788
Venturi S, Sharma M, Panesi M. A machine learning framework for the quantification of the uncertainties associated with ab-initio based modeling of non-equilibrium flows. In AIAA Scitech 2019 Forum. American Institute of Aeronautics and Astronautics Inc, AIAA. 2019. (AIAA Scitech 2019 Forum). https://doi.org/10.2514/6.2019-0788
Venturi, Simone ; Sharma, Maitreyee ; Panesi, Marco. / A machine learning framework for the quantification of the uncertainties associated with ab-initio based modeling of non-equilibrium flows. AIAA Scitech 2019 Forum. American Institute of Aeronautics and Astronautics Inc, AIAA, 2019. (AIAA Scitech 2019 Forum).
@inproceedings{0730e39f8d86404cb2c18500a37c093a,
title = "A machine learning framework for the quantification of the uncertainties associated with ab-initio based modeling of non-equilibrium flows",
author = "Simone Venturi and Maitreyee Sharma and Marco Panesi",
year = "2019",
month = "1",
day = "1",
doi = "10.2514/6.2019-0788",
language = "English (US)",
isbn = "9781624105784",
series = "AIAA Scitech 2019 Forum",
publisher = "American Institute of Aeronautics and Astronautics Inc, AIAA",
booktitle = "AIAA Scitech 2019 Forum",

}

TY - GEN

T1 - A machine learning framework for the quantification of the uncertainties associated with ab-initio based modeling of non-equilibrium flows

AU - Venturi, Simone

AU - Sharma, Maitreyee

AU - Panesi, Marco

PY - 2019/1/1

Y1 - 2019/1/1

UR - http://www.scopus.com/inward/record.url?scp=85068990575&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85068990575&partnerID=8YFLogxK

U2 - 10.2514/6.2019-0788

DO - 10.2514/6.2019-0788

M3 - Conference contribution

SN - 9781624105784

T3 - AIAA Scitech 2019 Forum

BT - AIAA Scitech 2019 Forum

PB - American Institute of Aeronautics and Astronautics Inc, AIAA

ER -