A Lyapunov-based approach for Time-Coordinated 3D Path-Following of multiple quadrotors

Venanzio Cichella, Isaac Kaminer, Enric Xargay, Vladimir Dobrokhodov, Naira Hovakimyan, A. Pedro Aguiar, Antonio M. Pascoal

Research output: Contribution to journalConference articlepeer-review


This paper focuses on the problem of developing control laws to solve the Time-Coordinated 3D Path-Following task for multiple quadrotor UAVs in the presence of time-varying communication networks and spatial and temporal constraints. The objective is to enable a fleet of quadrotors to track predefined spatial paths while coordinating to achieve synchronization in both time and heading. One scenario is a symmetric exchange of position by four quadrotors initially positioned in four corners of a square room. When the mission starts, every quadrotor is required to execute collision free maneuvers and arrive at the opposite corner at the same desired instant of time. In this paper, the time-coordination task is solved by adjusting the second derivative of the coordination variable along the desired paths. Conditions are derived under which the coordination and path-following errors converge to a neighborhood of zero. Flight test results are presented to validate the theoretical findings.

Original languageEnglish (US)
Article number6425933
Pages (from-to)1776-1781
Number of pages6
JournalProceedings of the IEEE Conference on Decision and Control
StatePublished - 2012
Event51st IEEE Conference on Decision and Control, CDC 2012 - Maui, HI, United States
Duration: Dec 10 2012Dec 13 2012

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization


Dive into the research topics of 'A Lyapunov-based approach for Time-Coordinated 3D Path-Following of multiple quadrotors'. Together they form a unique fingerprint.

Cite this