TY - JOUR

T1 - A limiting velocity for quarkonium propagation in a strongly coupled plasma via AdS/CFT

AU - Ejaz, Qudsia J.

AU - Faulkner, Thomas

AU - Liu, Hong

AU - Rajagopal, Krishna

AU - Wiedemann, Urs Achim

N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.

PY - 2008/4/1

Y1 - 2008/4/1

N2 - We study the dispersion relations of mesons in a particular hot strongly coupled supersymmetric gauge theory plasma. We find that at large momentum k the dispersion relations become ω v 0k+a+b/k+, where the limiting velocity v 0 is the same for mesons with any quantum numbers and depends only on the ratio of the temperature to the quark mass T/m q. We compute a and b in terms of the meson quantum numbers and T/m q. The limiting meson velocity v 0 becomes much smaller than the speed of light at temperatures below but close to T diss, the temperature above which no meson bound states at rest in the plasma are found. From our result for v 0(T/m q), we find that the temperature above which no meson bound states with velocity v exist is T diss(v) (1-v 2) 1/4T diss, up to few percent corrections. We thus confirm by direct calculation of meson dispersion relations a result inferred indirectly in previous work via analysis of the screening length between a static quark and antiquark in a moving plasma. Although we do not do our calculations in QCD, we argue that the qualitative features of the dispersion relation we compute, including in particular the relation between dissociation temperature and meson velocity, may apply to bottomonium and charmonium mesons propagating in the strongly coupled plasma of QCD. We discuss how our results can contribute to understanding quarkonium physics in heavy ion collisions.

AB - We study the dispersion relations of mesons in a particular hot strongly coupled supersymmetric gauge theory plasma. We find that at large momentum k the dispersion relations become ω v 0k+a+b/k+, where the limiting velocity v 0 is the same for mesons with any quantum numbers and depends only on the ratio of the temperature to the quark mass T/m q. We compute a and b in terms of the meson quantum numbers and T/m q. The limiting meson velocity v 0 becomes much smaller than the speed of light at temperatures below but close to T diss, the temperature above which no meson bound states at rest in the plasma are found. From our result for v 0(T/m q), we find that the temperature above which no meson bound states with velocity v exist is T diss(v) (1-v 2) 1/4T diss, up to few percent corrections. We thus confirm by direct calculation of meson dispersion relations a result inferred indirectly in previous work via analysis of the screening length between a static quark and antiquark in a moving plasma. Although we do not do our calculations in QCD, we argue that the qualitative features of the dispersion relation we compute, including in particular the relation between dissociation temperature and meson velocity, may apply to bottomonium and charmonium mesons propagating in the strongly coupled plasma of QCD. We discuss how our results can contribute to understanding quarkonium physics in heavy ion collisions.

KW - AdS-CFT correspondence

KW - QCD

UR - http://www.scopus.com/inward/record.url?scp=44449091163&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=44449091163&partnerID=8YFLogxK

U2 - 10.1088/1126-6708/2008/04/089

DO - 10.1088/1126-6708/2008/04/089

M3 - Article

AN - SCOPUS:44449091163

VL - 2008

JO - Journal of High Energy Physics

JF - Journal of High Energy Physics

SN - 1126-6708

IS - 4

M1 - 089

ER -