@inproceedings{4e43c7b8882d4196a63ee02023c1ad49,
title = "A learned filtered backprojection method for use with half-time circular radon transform data",
abstract = "The circular Radon transform (CRT) is widely employed as an imaging model for wave-based tomographic bioimaging modalities like ultrasound reflectivity tomography. A complete set of CRT data function is known to have redundancies. However, no explicit non-iterative image reconstruction method is known for inverting temporally-truncated data. To address this, a learning-based approach is proposed to establish a filtered backprojection (FBP) method for use with the half-time CRT data function. The proposed method approximates a mapping that is known to exist in theory; therefore, it is fundamentally different than many deep-learning based reconstruction methods that seek to establish a non-existent mapping. Thus, the proposed method performs well on unforeseen data. The learned half-time FBP achieves image quality comparable to a conventional full-time FBP method although it uses half of the complete data.",
keywords = "circular Radon transform, deep learning, image reconstruction",
author = "Cam, {Refik Mert} and Umberto Villa and Anastasio, {Mark A.}",
note = "Publisher Copyright: {\textcopyright} 2022 SPIE.; Medical Imaging 2022: Physics of Medical Imaging ; Conference date: 21-03-2022 Through 27-03-2022",
year = "2022",
doi = "10.1117/12.2612941",
language = "English (US)",
series = "Progress in Biomedical Optics and Imaging - Proceedings of SPIE",
publisher = "SPIE",
editor = "Wei Zhao and Lifeng Yu",
booktitle = "Medical Imaging 2022",
}