### Abstract

This paper presents a consistent LBM formulation for the simulation of a two-phase water-steam system. Results of initial model validation in a range of thermodynamic conditions typical for Boiling Water Reactors (BWRs) are also shown. The interface between the two coexisting phases is captured from the dynamics of the model itself, i.e., no interface tracking is needed. The model is based on the Peng-Robinson (P-R) non-ideal equation of state and can quantitatively approximate the phase-coexistence curve for water at different temperatures ranging from 125 to 325 ^{{ring operator}}C. Consequently, coexisting phases with large density ratios (up to ∼1000) may be simulated. Two-phase models in the 200-300 ^{{ring operator}}C temperature range are of significant importance to nuclear engineers since most BWRs operate under similar thermodynamic conditions. Simulation of bubbles and droplets in a gravity-free environment of the corresponding coexisting phase until steady state is reached satisfies Laplace law at different temperatures and thus, yield the surface tension of the fluid. Comparing the LBM surface tension thus calculated using the LBM to the corresponding experimental values for water, the LBM lattice unit (lu) can be scaled to the physical units. Using this approach, spatial scaling of the LBM emerges from the model itself and is not imposed externally.

Original language | English (US) |
---|---|

Pages (from-to) | 975-986 |

Number of pages | 12 |

Journal | Computers and Mathematics with Applications |

Volume | 58 |

Issue number | 5 |

DOIs | |

State | Published - Sep 2009 |

### Fingerprint

### Keywords

- Multiphase
- Peng-Robinson equation of state
- Surface tension

### ASJC Scopus subject areas

- Computational Theory and Mathematics
- Modeling and Simulation
- Computational Mathematics

### Cite this

*Computers and Mathematics with Applications*,

*58*(5), 975-986. DOI: 10.1016/j.camwa.2009.02.004

**A lattice Boltzmann framework to simulate boiling water reactor core hydrodynamics.** / Jain, Prashant K.; Tentner, Adrian; Rizwan-uddin.

Research output: Contribution to journal › Article

*Computers and Mathematics with Applications*, vol 58, no. 5, pp. 975-986. DOI: 10.1016/j.camwa.2009.02.004

}

TY - JOUR

T1 - A lattice Boltzmann framework to simulate boiling water reactor core hydrodynamics

AU - Jain,Prashant K.

AU - Tentner,Adrian

AU - Rizwan-uddin,

PY - 2009/9

Y1 - 2009/9

N2 - This paper presents a consistent LBM formulation for the simulation of a two-phase water-steam system. Results of initial model validation in a range of thermodynamic conditions typical for Boiling Water Reactors (BWRs) are also shown. The interface between the two coexisting phases is captured from the dynamics of the model itself, i.e., no interface tracking is needed. The model is based on the Peng-Robinson (P-R) non-ideal equation of state and can quantitatively approximate the phase-coexistence curve for water at different temperatures ranging from 125 to 325 {ring operator}C. Consequently, coexisting phases with large density ratios (up to ∼1000) may be simulated. Two-phase models in the 200-300 {ring operator}C temperature range are of significant importance to nuclear engineers since most BWRs operate under similar thermodynamic conditions. Simulation of bubbles and droplets in a gravity-free environment of the corresponding coexisting phase until steady state is reached satisfies Laplace law at different temperatures and thus, yield the surface tension of the fluid. Comparing the LBM surface tension thus calculated using the LBM to the corresponding experimental values for water, the LBM lattice unit (lu) can be scaled to the physical units. Using this approach, spatial scaling of the LBM emerges from the model itself and is not imposed externally.

AB - This paper presents a consistent LBM formulation for the simulation of a two-phase water-steam system. Results of initial model validation in a range of thermodynamic conditions typical for Boiling Water Reactors (BWRs) are also shown. The interface between the two coexisting phases is captured from the dynamics of the model itself, i.e., no interface tracking is needed. The model is based on the Peng-Robinson (P-R) non-ideal equation of state and can quantitatively approximate the phase-coexistence curve for water at different temperatures ranging from 125 to 325 {ring operator}C. Consequently, coexisting phases with large density ratios (up to ∼1000) may be simulated. Two-phase models in the 200-300 {ring operator}C temperature range are of significant importance to nuclear engineers since most BWRs operate under similar thermodynamic conditions. Simulation of bubbles and droplets in a gravity-free environment of the corresponding coexisting phase until steady state is reached satisfies Laplace law at different temperatures and thus, yield the surface tension of the fluid. Comparing the LBM surface tension thus calculated using the LBM to the corresponding experimental values for water, the LBM lattice unit (lu) can be scaled to the physical units. Using this approach, spatial scaling of the LBM emerges from the model itself and is not imposed externally.

KW - Multiphase

KW - Peng-Robinson equation of state

KW - Surface tension

UR - http://www.scopus.com/inward/record.url?scp=67650554174&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=67650554174&partnerID=8YFLogxK

U2 - 10.1016/j.camwa.2009.02.004

DO - 10.1016/j.camwa.2009.02.004

M3 - Article

VL - 58

SP - 975

EP - 986

JO - Computers and Mathematics with Applications

T2 - Computers and Mathematics with Applications

JF - Computers and Mathematics with Applications

SN - 0898-1221

IS - 5

ER -