TY - JOUR
T1 - A laboratory study of particle ploughing and pore-pressure feedback
T2 - A velocity-weakening mechanism for soft glacier beds
AU - Thomason, Jason F.
AU - Iverson, Neal R.
PY - 2008
Y1 - 2008
N2 - If basal-water discharge and pressure are sufficiently high, a soft-bedded glacier will slip over its bed by ploughing, the process in which particles that span the ice-bed interface are dragged across the bed surface. Results of laboratory experiments indicate that resistance to ploughing can decrease with increasing ploughing velocity (velocity weakening). During ploughing at various velocities (15-400 ma-1), till was compacted in front of idealized particles, causing pore pressures there that were orders of magnitude higher than the ambient value. This excess pore pressure locally weakened the till in shear, thereby decreasing ploughing resistance by a factor of 3.0-6.6 with a six-fold increase in ploughing velocity. Characteristic timescales of pore-pressure diffusion and compaction down-glacier from ploughing particles depend on till diffusivity, ploughing velocity and sizes of ploughing particles. These timescales accurately predict the ranges of these variables over which excess pore pressure and velocity weakening occurred. Existing ploughing models do not account for velocity weakening. A new ploughing model with no adjustable parameters predicts ploughing resistance to no worse than 38% but requires that excess pore pressures be measured. Velocity weakening by this mechanism may affect fast glacier flow, sediment transport by bed deformation and basal seismicity.
AB - If basal-water discharge and pressure are sufficiently high, a soft-bedded glacier will slip over its bed by ploughing, the process in which particles that span the ice-bed interface are dragged across the bed surface. Results of laboratory experiments indicate that resistance to ploughing can decrease with increasing ploughing velocity (velocity weakening). During ploughing at various velocities (15-400 ma-1), till was compacted in front of idealized particles, causing pore pressures there that were orders of magnitude higher than the ambient value. This excess pore pressure locally weakened the till in shear, thereby decreasing ploughing resistance by a factor of 3.0-6.6 with a six-fold increase in ploughing velocity. Characteristic timescales of pore-pressure diffusion and compaction down-glacier from ploughing particles depend on till diffusivity, ploughing velocity and sizes of ploughing particles. These timescales accurately predict the ranges of these variables over which excess pore pressure and velocity weakening occurred. Existing ploughing models do not account for velocity weakening. A new ploughing model with no adjustable parameters predicts ploughing resistance to no worse than 38% but requires that excess pore pressures be measured. Velocity weakening by this mechanism may affect fast glacier flow, sediment transport by bed deformation and basal seismicity.
UR - http://www.scopus.com/inward/record.url?scp=41949121832&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=41949121832&partnerID=8YFLogxK
U2 - 10.3189/002214308784409008
DO - 10.3189/002214308784409008
M3 - Article
AN - SCOPUS:41949121832
SN - 0022-1430
VL - 54
SP - 169
EP - 181
JO - Journal of Glaciology
JF - Journal of Glaciology
IS - 184
ER -