TY - GEN
T1 - A joint neural model for information extraction with global features
AU - Lin, Ying
AU - Ji, Heng
AU - Huang, Fei
AU - Wu, Lingfei
N1 - This research is based upon work supported in part by U.S. DARPA KAIROS Program No. FA8750-19-2-1004, U.S. DARPA AIDA Program No. FA8750-18-2-0014, Air Force No. FA8650-17-C-7715, the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via contract No. FA8650-17-C-9116. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of DARPA, ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.
PY - 2020
Y1 - 2020
N2 - Most existing joint neural models for Information Extraction (IE) use local task-specific classifiers to predict labels for individual instances (e.g., trigger, relation) regardless of their interactions. For example, a VICTIM of a DIE event is likely to be a VICTIM of an ATTACK event in the same sentence. In order to capture such cross-subtask and cross-instance inter-dependencies, we propose a joint neural framework, ONEIE, that aims to extract the globally optimal IE result as a graph from an input sentence. ONEIE performs end-to-end IE in four stages: (1) Encoding a given sentence as contextualized word representations; (2) Identifying entity mentions and event triggers as nodes; (3) Computing label scores for all nodes and their pairwise links using local classifiers; (4) Searching for the globally optimal graph with a beam decoder. At the decoding stage, we incorporate global features to capture the cross-subtask and cross-instance interactions. Experiments show that adding global features improves the performance of our model and achieves new state-of-the-art on all subtasks. As ONEIE does not use any language-specific feature, we prove it can be easily applied to new languages or trained in a multilingual manner. Our code and models for English, Spanish and Chinese are publicly available for research purpose.
AB - Most existing joint neural models for Information Extraction (IE) use local task-specific classifiers to predict labels for individual instances (e.g., trigger, relation) regardless of their interactions. For example, a VICTIM of a DIE event is likely to be a VICTIM of an ATTACK event in the same sentence. In order to capture such cross-subtask and cross-instance inter-dependencies, we propose a joint neural framework, ONEIE, that aims to extract the globally optimal IE result as a graph from an input sentence. ONEIE performs end-to-end IE in four stages: (1) Encoding a given sentence as contextualized word representations; (2) Identifying entity mentions and event triggers as nodes; (3) Computing label scores for all nodes and their pairwise links using local classifiers; (4) Searching for the globally optimal graph with a beam decoder. At the decoding stage, we incorporate global features to capture the cross-subtask and cross-instance interactions. Experiments show that adding global features improves the performance of our model and achieves new state-of-the-art on all subtasks. As ONEIE does not use any language-specific feature, we prove it can be easily applied to new languages or trained in a multilingual manner. Our code and models for English, Spanish and Chinese are publicly available for research purpose.
UR - http://www.scopus.com/inward/record.url?scp=85105853316&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85105853316&partnerID=8YFLogxK
U2 - 10.18653/v1/2020.acl-main.713
DO - 10.18653/v1/2020.acl-main.713
M3 - Conference contribution
AN - SCOPUS:85105853316
T3 - Proceedings of the Annual Meeting of the Association for Computational Linguistics
SP - 7999
EP - 8009
BT - ACL 2020 - 58th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference
PB - Association for Computational Linguistics (ACL)
T2 - 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020
Y2 - 5 July 2020 through 10 July 2020
ER -