A hybrid inference approach for health diagnostics with unexampled faulty states

Prasanna Tamilselvan, Pingfeng Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

System health diagnostics provides diversified benefits such as improved safety, improved reliability and reduced costs for the operation and maintenance of engineered systems. Successful health diagnostics requires the knowledge of system failures. However, with an increasing complexity it is extraordinarily difficult to have a well-tested system so that all potential faulty states can be realized and studied at product testing stage. Thus, real time health diagnostics requires automatic detection of unexampled faulty states through the sensory signals to avoid sudden catastrophic system failures. This paper presents a hybrid inference approach (HIA) for structural health diagnosis with unexampled faulty states, which employs a two-fold inference process comprising of preliminary statistical learning based anomaly detection and artificial intelligence based health state classification for real time condition monitoring. The HIA is able to identify and isolate the unexampled faulty states through interactively detecting the deviation of sensory data from the known health states and forming new health states autonomously. The proposed approach takes the advantages of both statistical approaches and artificial intelligence based techniques and integrates them together in a unified diagnosis framework. The performance of proposed HIA is demonstrated with a power transformer health diagnosis case study, where Mahalanobis distance serves as a representative statistical inference approach.

Original languageEnglish (US)
Title of host publication53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
StatePublished - 2012
Externally publishedYes
Event53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference - Honolulu, HI, United States
Duration: Apr 23 2012Apr 26 2012

Publication series

NameCollection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
ISSN (Print)0273-4508

Other

Other53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
Country/TerritoryUnited States
CityHonolulu, HI
Period4/23/124/26/12

ASJC Scopus subject areas

  • Architecture
  • General Materials Science
  • Aerospace Engineering
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'A hybrid inference approach for health diagnostics with unexampled faulty states'. Together they form a unique fingerprint.

Cite this