A highly digital 0.5-to-4Gb/s 1.9mW/Gb/s serial-link transceiver using current-recycling in 90nm CMOS

Rajesh Inti, Amr Elshazly, Brian Young, Wenjing Yin, Marcel Kossel, Thomas Toifl, Pavan Kumar Hanumolu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Ever-growing demand for higher communication bandwidth in high performance compute systems is driving the need for energy-efficient multi-Gb/s I/O serial links. Improved power efficiency was demonstrated using adaptive supply regulation [1, 2]. However, power losses in the DC-DC converter needed to generate the optimal supply voltage and the difficulty in operating analog circuits at low voltages limit the power savings. Instead of scaling the supply with the data rate, we seek to operate with two fixed voltages and eliminate the need for a high-efficiency DC-DC converter. To this end, this paper presents a serial link using a highly efficient current recycling-based implicit DC-DC conversion to generate 0.6V from a 1.2V supply. Highly digital clocking circuits capable of operating at 0.6V maximize power savings. A 0.5-to-4Gb/s serial-link transceiver is designed in a 1.2V LP 90nm CMOS process to operate with a short channel and ple-siochronous timing. The transceiver dissipates 1.9mW/Gb/s at 3.2Gb/s.

Original languageEnglish (US)
Title of host publication2011 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, ISSCC 2011
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages152-153
Number of pages2
ISBN (Print)9781612843001
DOIs
StatePublished - 2011
Externally publishedYes
Event2011 IEEE International Solid-State Circuits Conference, ISSCC 2011 - San Francisco, CA, United States
Duration: Feb 20 2011Feb 24 2011

Publication series

NameDigest of Technical Papers - IEEE International Solid-State Circuits Conference
ISSN (Print)0193-6530

Other

Other2011 IEEE International Solid-State Circuits Conference, ISSCC 2011
Country/TerritoryUnited States
CitySan Francisco, CA
Period2/20/112/24/11

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A highly digital 0.5-to-4Gb/s 1.9mW/Gb/s serial-link transceiver using current-recycling in 90nm CMOS'. Together they form a unique fingerprint.

Cite this