Abstract
We apply maximal asymptotic conditional efficiency joint successive interference cancellation (MACE-JSIC) to frequency-selective channel equalization and propose improvements that extend MACE-JSIC detection to the broader paradigm of time-varying and imprecisely known communication systems. The need for expensive redesign to include any change in the interfering signals is a fundamental limitation of MACE-JSIC detection despite its high performance and low detection complexity. In this work, we derive sufficiency criteria that reduce maximum asymptotic efficiency (MAE) detection to low-complexity decorrelation and exploit this relationship to extend the MACE-JSIC approach to time-varying communication systems. Simulations on several multi-user systems and frequency-selective channels demonstrate that the performance of the proposed detectors is consistent with theoretical expectations.
Original language | English (US) |
---|---|
Article number | 5643186 |
Pages (from-to) | 1694-1705 |
Number of pages | 12 |
Journal | IEEE Transactions on Signal Processing |
Volume | 59 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2011 |
Keywords
- Direct-sequence code-division multple access
- equalizers
- multiaccess communication
- multiple access interference
ASJC Scopus subject areas
- Signal Processing
- Electrical and Electronic Engineering