A generic sensor network design framework based on a detectability measure

Pingfeng Wang, Byeng D. Youn, Chao Hu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Significant technological advances in sensing and communication promote the use of large sensor networks to monitor structural systems, identify damages, and quantify damage levels. Prognostics and health management (PHM) technique has been developed and applied for a variety of safety-critical engineering structures, given the critical needs of the structure health state awareness. The PHM performance highly relies on real-time sensory signals which convey the structural health relevant information. Designing an optimal structural sensor network (SN) with high detectability is thus of great importance to the PHM performance. This paper proposes a generic SN design framework using a detectability measure while accounting for uncertainties in material properties and geometric tolerances. Detectability is defined to quantify the performance of a given SN. Then, detectability analysis will be developed based on structural simulations and health state classification. Finally, the generic SN design framework can be formulated as a mixed integer nonlinear programming (MINLP) using the detectability measure and genetic algorithms (GAs) will be employed to solve the SN design optimization problem. A power transformer study will be used to demonstrate the feasibility of the proposed generic SN design methodology.

Original languageEnglish (US)
Title of host publicationASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010
Pages1013-1022
Number of pages10
EditionPARTS A AND B
DOIs
StatePublished - 2010
Externally publishedYes
EventASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010 - Montreal, QC, Canada
Duration: Aug 15 2010Aug 18 2010

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
NumberPARTS A AND B
Volume3

Other

OtherASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010
Country/TerritoryCanada
CityMontreal, QC
Period8/15/108/18/10

ASJC Scopus subject areas

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'A generic sensor network design framework based on a detectability measure'. Together they form a unique fingerprint.

Cite this