A generic fusion platform of failure diagnostics for resilient engineering system design

Amirmahyar Abdolsamadi, Pingfeng Wang, Prasanna Tamilselvan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Effective health diagnostics provides benefits such as improved safety, improved reliability, and reduced costs for the operation and maintenance of complex engineered systems. This paper presents a multi-attribute classification fusion approach which leverages the strengths provided by multiple membership classifiers to form a robust classification model for structural health diagnostics. The developed classification fusion approach conducts the health diagnostics with three primary stages: (i) fusion formulation using a k-fold cross validation model; (ii) diagnostics with multiple multi-attribute classifiers as member algorithms; and (iii) classification fusion through a weighted majority voting with dominance system. State-of-the-art classification techniques from three broad categories (i.e., supervised learning, unsupervised learning, and statistical inference) are employed as the member algorithms. The developed classification fusion approach is demonstrated with the 2008 PHM challenge problem. The developed fusion diagnostics approach outperforms any standalone member algorithm with better diagnostic accuracy and robustness.

Original languageEnglish (US)
Title of host publication41st Design Automation Conference
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791857076
DOIs
StatePublished - 2015
Externally publishedYes
EventASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2015 - Boston, United States
Duration: Aug 2 2015Aug 5 2015

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume2A-2015

Other

OtherASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2015
CountryUnited States
CityBoston
Period8/2/158/5/15

ASJC Scopus subject areas

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint Dive into the research topics of 'A generic fusion platform of failure diagnostics for resilient engineering system design'. Together they form a unique fingerprint.

Cite this