TY - CONF
T1 - A generative model for discovering action-based roles and community role compositions on community question answering platforms
AU - Geigle, Chase
AU - Dev, Himel
AU - Sundaram, Hari
AU - Zhai, Cheng Xiang
N1 - Funding Information:
This material is based upon work supported by the NSF GRFP under Grant Number DGE-1144245, and by the NSF Research Program under Grant Number IIS-1629161.
Publisher Copyright:
Copyright © 2019, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2019
Y1 - 2019
N2 - This paper proposes a generative model for discovering user roles and community role compositions in Community Question Answering (CQA) platforms. While past research shows that participants play different roles in online communities, automatically discovering these roles and providing a summary of user behavior that is readily interpretable remains an important challenge. Furthermore, there has been relatively little insight into the distribution of these roles between communities. Does a community’s composition over user roles vary as a function of topic? How does it relate to the health of the underlying community? Does role composition evolve over time? The generative model proposed in this paper, the mixture of Dirichlet-multinomial mixtures (MDMM) behavior model can (1) automatically discover interpetable user roles (as probability distributions over atomic actions) directly from log data, and (2) uncover community-level role compositions to facilitate such cross-community studies. A comprehensive experiment on all 161 non-meta communities on the StackExchange CQA platform demonstrates that our model can be useful for a wide variety of behavioral studies, and we highlight three empirical insights. First, we show interesting distinctions in question-asking behavior on StackExchange (where two distinct types of askers can be identified) and answering behavior (where two distinct roles surrounding answers emerge). Second, we find statistically significant differences in behavior compositions across topical groups of communities on StackExchange, and that those groups that have statistically significant differences in health metrics also have statistically significant differences in behavior compositions, suggesting a relationship between behavior composition and health. Finally, we show that the MDMM behavior model can be used to demonstrate similar but distinct evolutionary patterns between topical groups.
AB - This paper proposes a generative model for discovering user roles and community role compositions in Community Question Answering (CQA) platforms. While past research shows that participants play different roles in online communities, automatically discovering these roles and providing a summary of user behavior that is readily interpretable remains an important challenge. Furthermore, there has been relatively little insight into the distribution of these roles between communities. Does a community’s composition over user roles vary as a function of topic? How does it relate to the health of the underlying community? Does role composition evolve over time? The generative model proposed in this paper, the mixture of Dirichlet-multinomial mixtures (MDMM) behavior model can (1) automatically discover interpetable user roles (as probability distributions over atomic actions) directly from log data, and (2) uncover community-level role compositions to facilitate such cross-community studies. A comprehensive experiment on all 161 non-meta communities on the StackExchange CQA platform demonstrates that our model can be useful for a wide variety of behavioral studies, and we highlight three empirical insights. First, we show interesting distinctions in question-asking behavior on StackExchange (where two distinct types of askers can be identified) and answering behavior (where two distinct roles surrounding answers emerge). Second, we find statistically significant differences in behavior compositions across topical groups of communities on StackExchange, and that those groups that have statistically significant differences in health metrics also have statistically significant differences in behavior compositions, suggesting a relationship between behavior composition and health. Finally, we show that the MDMM behavior model can be used to demonstrate similar but distinct evolutionary patterns between topical groups.
UR - http://www.scopus.com/inward/record.url?scp=85070355743&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85070355743&partnerID=8YFLogxK
M3 - Paper
AN - SCOPUS:85070355743
SP - 181
EP - 192
T2 - 13th International Conference on Web and Social Media, ICWSM 2019
Y2 - 11 June 2019 through 14 June 2019
ER -