A generalized neural tangent kernel analysis for two-layer neural networks

Zixiang Chen, Yuan Cao, Quanquan Gu, Tong Zhang

Research output: Contribution to journalConference articlepeer-review

Abstract

A recent breakthrough in deep learning theory shows that the training of overparameterized deep neural networks can be characterized by a kernel function called neural tangent kernel (NTK). However, it is known that this type of results does not perfectly match the practice, as NTK-based analysis requires the network weights to stay very close to their initialization throughout training, and cannot handle regularizers or gradient noises. In this paper, we provide a generalized neural tangent kernel analysis and show that noisy gradient descent with weight decay can still exhibit a “kernel-like” behavior. This implies that the training loss converges linearly up to a certain accuracy. We also establish a novel generalization error bound for two-layer neural networks trained by noisy gradient descent with weight decay.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume2020-December
StatePublished - 2020
Externally publishedYes
Event34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online
Duration: Dec 6 2020Dec 12 2020

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'A generalized neural tangent kernel analysis for two-layer neural networks'. Together they form a unique fingerprint.

Cite this