A general network architecture for sound event localization and detection using transfer learning and recurrent neural network

Thi Ngoc Tho Nguyen, Ngoc Khanh Nguyen, Huy Phan, Lam Pham, Kenneth Ooi, Douglas L. Jones, Woon Seng Gan

Research output: Contribution to journalConference articlepeer-review

Abstract

Polyphonic sound event detection and localization (SELD) task is challenging because it is difficult to jointly optimize sound event detection (SED) and direction-of-arrival (DOA) estimation in the same network. We propose a general network architecture for SELD in which the SELD network comprises sub-networks that are pretrained to solve SED and DOA estimation independently, and a recurrent layer that combines the SED and DOA estimation outputs into SELD outputs. The recurrent layer does the alignment between the sound classes and DOAs of sound events while being unaware of how these outputs are produced by the upstream SED and DOA estimation algorithms. This simple network architecture is compatible with different existing SED and DOA estimation algorithms. It is highly practical since the sub-networks can be improved independently. The experimental results using the DCASE 2020 SELD dataset show that the performances of our proposed network architecture using different SED and DOA estimation algorithms and different audio formats are competitive with other state-of-the-art SELD algorithms. The source code for the proposed SELD network architecture is available at Github.

Original languageEnglish (US)
Pages (from-to)935-939
Number of pages5
JournalICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2021-June
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 - Virtual, Toronto, Canada
Duration: Jun 6 2021Jun 11 2021

Keywords

  • Direction-of-arrival estimation
  • Network architecture
  • Recurrent neural network
  • Sound event detection

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A general network architecture for sound event localization and detection using transfer learning and recurrent neural network'. Together they form a unique fingerprint.

Cite this