TY - JOUR
T1 - A general iterative approach for the system-level joint optimization of pavement maintenance, rehabilitation, and reconstruction planning
AU - Zhang, Le
AU - Fu, Liangliang
AU - Gu, Weihua
AU - Ouyang, Yanfeng
AU - Hu, Yaohua
N1 - Publisher Copyright:
© 2017 Elsevier Ltd
PY - 2017/11
Y1 - 2017/11
N2 - We formulate a general bottom-up model for the joint optimization of maintenance, rehabilitation, and reconstruction (MR&R) schedules for a system of heterogeneous pavement segments under budget constraints. The objective is to minimize the total costs incurred to both the highway users and the pavement management agency. We propose a Lagrange multiplier approach together with derivative-free quasi-Newton algorithms to solve the problem for two scenarios: i) with a combined budget constraint for all the treatments; and ii) with one budget constraint for each treatment. The system-level solution approach has the following merits: i) it can be applied to problems with any forms of segment-level models for user and agency costs, deterioration process, and treatment effectiveness, given that the solution to the segment-level problem is available; ii) under the combined budget constraint, it ensures that the optimality gap of the system-level solution is bounded by a term that depends upon the optimality gap of the segment-level solutions; and iii) it exhibits linear complexity with the number of segments. At the segment level, a new maintenance effectiveness model fitted on empirical data is proposed and incorporated into the MR&R optimization program. A greedy heuristic algorithm is developed, which greatly reduces the computation time without compromising the solution quality. Combining the system- and segment-level models and solution algorithms, we examine a batch of numerical cases. The results show considerable cost savings from the incorporation of maintenance, and from jointly optimizing the use of a combined agency budget. A number of managerial insights stemmed from the numerical case studies are discussed, which can help highway agencies formulate more cost-efficient MR&R plans and budget allocation.
AB - We formulate a general bottom-up model for the joint optimization of maintenance, rehabilitation, and reconstruction (MR&R) schedules for a system of heterogeneous pavement segments under budget constraints. The objective is to minimize the total costs incurred to both the highway users and the pavement management agency. We propose a Lagrange multiplier approach together with derivative-free quasi-Newton algorithms to solve the problem for two scenarios: i) with a combined budget constraint for all the treatments; and ii) with one budget constraint for each treatment. The system-level solution approach has the following merits: i) it can be applied to problems with any forms of segment-level models for user and agency costs, deterioration process, and treatment effectiveness, given that the solution to the segment-level problem is available; ii) under the combined budget constraint, it ensures that the optimality gap of the system-level solution is bounded by a term that depends upon the optimality gap of the segment-level solutions; and iii) it exhibits linear complexity with the number of segments. At the segment level, a new maintenance effectiveness model fitted on empirical data is proposed and incorporated into the MR&R optimization program. A greedy heuristic algorithm is developed, which greatly reduces the computation time without compromising the solution quality. Combining the system- and segment-level models and solution algorithms, we examine a batch of numerical cases. The results show considerable cost savings from the incorporation of maintenance, and from jointly optimizing the use of a combined agency budget. A number of managerial insights stemmed from the numerical case studies are discussed, which can help highway agencies formulate more cost-efficient MR&R plans and budget allocation.
KW - Budget constraints
KW - Lagrange multiplier
KW - Preventive maintenance model
KW - Quasi-Newton methods
KW - System-level MR&R planning
UR - http://www.scopus.com/inward/record.url?scp=85042149769&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85042149769&partnerID=8YFLogxK
U2 - 10.1016/j.trb.2017.09.014
DO - 10.1016/j.trb.2017.09.014
M3 - Article
AN - SCOPUS:85042149769
SN - 0191-2615
VL - 105
SP - 378
EP - 400
JO - Transportation Research Part B: Methodological
JF - Transportation Research Part B: Methodological
ER -