A Few Expert Queries Suffices for Sample-Efficient RL with Resets and Linear Value Approximation

Philip Amortila, Nan Jiang, Dhruv Madeka, Dean P. Foster

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The current paper studies sample-efficient Reinforcement Learning (RL) in settings where only the optimal value function is assumed to be linearly-realizable. It has recently been understood that, even under this seemingly strong assumption and access to a generative model, worst-case sample complexities can be prohibitively (i.e., exponentially) large. We investigate the setting where the learner additionally has access to interactive demonstrations from an expert policy, and we present a statistically and computationally efficient algorithm (DELPHI) for blending exploration with expert queries. In particular, DELPHI requires Õ(d) expert queries and a poly(d, H, |A|, 1/ε) amount of exploratory samples to provably recover an ε-suboptimal policy. Compared to pure RL approaches, this corresponds to an exponential improvement in sample complexity with surprisingly-little expert input. Compared to prior imitation learning (IL) approaches, our required number of expert demonstrations is independent of H and logarithmic in 1/ε, whereas all prior work required at least linear factors of both in addition to the same dependence on d. Towards establishing the minimal amount of expert queries needed, we show that, in the same setting, any learner whose exploration budget is polynomially-bounded (in terms of d, H, and |A|) will require at least Ω̃(√d) oracle calls to recover a policy competing with the expert's value function. Under the weaker assumption that the expert's policy is linear (rather than their value function), we show that the lower bound increases to Ω(d).

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
EditorsS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
PublisherNeural information processing systems foundation
ISBN (Electronic)9781713871088
StatePublished - 2022
Event36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, United States
Duration: Nov 28 2022Dec 9 2022

Publication series

NameAdvances in Neural Information Processing Systems
Volume35
ISSN (Print)1049-5258

Conference

Conference36th Conference on Neural Information Processing Systems, NeurIPS 2022
Country/TerritoryUnited States
CityNew Orleans
Period11/28/2212/9/22

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'A Few Expert Queries Suffices for Sample-Efficient RL with Resets and Linear Value Approximation'. Together they form a unique fingerprint.

Cite this