A fast algorithm for multiscale electromagnetic problems using interpolative decomposition and multilevel fast multipole algorithm

Xiao Min Pan, Jian Gong Wei, Zhen Peng, Xin Qing Sheng

Research output: Contribution to journalArticlepeer-review

Abstract

The interpolative decomposition (ID) is combined with the multilevel fast multipole algorithm (MLFMA), denoted by ID-MLFMA, to handle multiscale problems. The ID-MLFMA first generates ID levels by recursively dividing the boxes at the finest MLFMA level into smaller boxes. It is specifically shown that near-field interactions with respect to the MLFMA, in the form of the matrix vector multiplication (MVM), are efficiently approximated at the ID levels. Meanwhile, computations on far-field interactions at the MLFMA levels remain unchanged. Only a small portion of matrix entries are required to approximate coupling among well-separated boxes at the ID levels, and these submatrices can be filled without computing the complete original coupling matrix. It follows that the matrix filling in the ID-MLFMA becomes much less expensive. The memory consumed is thus greatly reduced and the MVM is accelerated as well. Several factors that may influence the accuracy, efficiency and reliability of the proposed ID-MLFMA are investigated by numerical experiments. Complex targets are calculated to demonstrate the capability of the ID-MLFMA algorithm.

Original languageEnglish (US)
Article numberRS1011
JournalRadio Science
Volume47
Issue number1
DOIs
StatePublished - 2012
Externally publishedYes

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Earth and Planetary Sciences(all)
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'A fast algorithm for multiscale electromagnetic problems using interpolative decomposition and multilevel fast multipole algorithm'. Together they form a unique fingerprint.

Cite this