A DNAzyme-gold nanoparticle probe for uranyl ion in living cells

Peiwen Wu, Kevin Hwang, Tian Lan, Yi Lu

Research output: Contribution to journalArticlepeer-review


DNAzymes have shown great promise as a general platform for detecting metal ions, as many metal-specific DNAzymes can be obtained using in vitro selection. While DNAzyme-based metal sensors have found many applications in the extracellular environment, no intracellular application of DNAzyme sensors has yet been reported. Here, we demonstrate a novel type of metal ion sensor for intracellular metal ion detection. The probe consists of a 13 nm gold nanoparticle (AuNP) core functionalized with a shell consisting of a uranyl-specific 39E DNAzyme whose enzyme strand contains a thiol at the 3 end for conjugation to the AuNP, and whose substrate strand is modified with a Cy3 fluorophore at the 5′ end and a molecular quencher at the 3′ end. In the absence of uranyl, the fluorescence of the Cy3 is quenched by both AuNP and the molecular quencher. In the presence of uranyl, the DNAzyme cleaves the fluorophore-labeled substrate strand, resulting in release of the shorter product strand containing the Cy3 and increased fluorescence. We demonstrate that this DNAzyme-AuNP probe can readily enter cells and can serve as a metal ion sensor within a cellular environment, making it the first demonstration of DNAzymes as intracellular metal ion sensors. Such a method can be generally applied to the detection of other metal ions using other DNAzymes selected through in vitro selection.

Original languageEnglish (US)
Pages (from-to)5254-5257
Number of pages4
JournalJournal of the American Chemical Society
Issue number14
StatePublished - Apr 10 2013

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry


Dive into the research topics of 'A DNAzyme-gold nanoparticle probe for uranyl ion in living cells'. Together they form a unique fingerprint.

Cite this