TY - JOUR
T1 - A deoxyribozyme that synthesizes 2′,5′-branched RNA with any branch-site nucleotide
AU - Pratico, Elizabeth D.
AU - Wang, Yangming
AU - Silverman, Scott K.
N1 - Funding Information:
The authors thank Scott W. Stevens (University of Texas at Austin) for the generous gift of purified yeast debranching enzyme Dbr. The authors also thank members of the Silverman laboratory for discussions. This research was supported by the Burroughs Wellcome Fund (New Investigator Award in the Basic Pharmacological Sciences), the March of Dimes Birth Defects Foundation (Research Grant No. 5-FY02-271), the National Institutes of Health (GM-65966), the American Chemical Society Petroleum Research Fund (38803-G4) and the UIUC Department of Chemistry (all to S.K.S.). S.K.S. is the recipient of a fellowship from The David and Lucile Packard Foundation. E.D.P. was supported by an NIH Cell & Molecular Biology Training Grant. Funding to pay the Open Access publication charges for this article was provided by the NIH.
PY - 2005
Y1 - 2005
N2 - RNA molecules with internal 2′,5′-branches are intermediates in RNA splicing, and branched RNAs have recently been proposed as retrotransposition intermediates. A broadly applicable in vitro synthetic route to branched RNA that does not require self-splicing introns or spliceosomes would substantially improve our ability to study biochemical processes that involve branched RNA. We recently described 7S11, a deoxyribozyme that was identified by in vitro selection and has general RNA branch-forming ability. However, an important restriction for 7S11 is that the branch-site RNA nucleotide must be a purine (A or G), because a pyrimidine (U or C) is not tolerated. Here, we describe the compact 6CE8 deoxyribozyme (selected using a 20 nt random region) that synthesizes 2′,5′-branched RNA with any nucleotide at the branch site. The Mn2+-dependent branch-forming ligation reaction is between an internal branch-site 2′-hydroxyl nucleophile on one RNA substrate with a 5′-triphosphate on another RNA substrate. The preference for the branch-site nucleotide is U > C ≅ A > G, although all four nucleotides are tolerated with useful ligation rates. Nearly all other nucleotides elsewhere in both RNA substrates allow ligation activity, except that the sequence requirement for the RNA strand with the 5′-triphosphate is 5′-pppGA, with 5′-pppGAR (R = purine) preferred. These characteristics permit 6CE8 to prepare branched RNAs of immediate practical interest, such as the proposed branched intermediate of Ty1 retrotransposition. Because this branched RNA has two strands with identical sequence that emerge from the branch site, we developed strategies to control which of the two strands bind with the deoxyribozyme during the branch-forming reaction. The ability to synthesize the proposed branched RNA of Ty1 retrotransposition will allow us to explore this important biochemical pathway in greater detail.
AB - RNA molecules with internal 2′,5′-branches are intermediates in RNA splicing, and branched RNAs have recently been proposed as retrotransposition intermediates. A broadly applicable in vitro synthetic route to branched RNA that does not require self-splicing introns or spliceosomes would substantially improve our ability to study biochemical processes that involve branched RNA. We recently described 7S11, a deoxyribozyme that was identified by in vitro selection and has general RNA branch-forming ability. However, an important restriction for 7S11 is that the branch-site RNA nucleotide must be a purine (A or G), because a pyrimidine (U or C) is not tolerated. Here, we describe the compact 6CE8 deoxyribozyme (selected using a 20 nt random region) that synthesizes 2′,5′-branched RNA with any nucleotide at the branch site. The Mn2+-dependent branch-forming ligation reaction is between an internal branch-site 2′-hydroxyl nucleophile on one RNA substrate with a 5′-triphosphate on another RNA substrate. The preference for the branch-site nucleotide is U > C ≅ A > G, although all four nucleotides are tolerated with useful ligation rates. Nearly all other nucleotides elsewhere in both RNA substrates allow ligation activity, except that the sequence requirement for the RNA strand with the 5′-triphosphate is 5′-pppGA, with 5′-pppGAR (R = purine) preferred. These characteristics permit 6CE8 to prepare branched RNAs of immediate practical interest, such as the proposed branched intermediate of Ty1 retrotransposition. Because this branched RNA has two strands with identical sequence that emerge from the branch site, we developed strategies to control which of the two strands bind with the deoxyribozyme during the branch-forming reaction. The ability to synthesize the proposed branched RNA of Ty1 retrotransposition will allow us to explore this important biochemical pathway in greater detail.
UR - http://www.scopus.com/inward/record.url?scp=20444469324&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=20444469324&partnerID=8YFLogxK
U2 - 10.1093/nar/gki656
DO - 10.1093/nar/gki656
M3 - Article
C2 - 15967808
AN - SCOPUS:20444469324
SN - 0305-1048
VL - 33
SP - 3503
EP - 3512
JO - Nucleic Acids Research
JF - Nucleic Acids Research
IS - 11
ER -