A deflation method for structured probabilistic PCA

Rajiv Khanna, Joydeep Ghosh, Russell Poldrack, Oluwasanmi Koyejo

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Modern treatments of structured Principal Component Analysis often focus on the estimation of a single component under various assumptions or priors, such as sparsity and smoothness, and then the procedure is extended to multiple components by sequential estimation interleaved with deflation. While prior work has highlighted the importance of proper deflation for ensuring the quality of the estimated components, to our knowledge, proposed techniques have only been developed and applied to non-probabilistic principal component analyses, and are not trivially extended to probabilistic analyses. This work introduces a novel, robust and efficient deflation method for Probabilistic Principal Component Analysis using tools recently developed for constrained probabilistic estimation via information projection. The components estimated using the proposed deflation regain some of the interpretability of classic PCA such as straightforward estimates of variance explained, while retaining the ability to incorporate rich prior structure. Moreover, sequential estimation allows for scaling probabilistic techniques to be at par with their deterministic counterparts. Experimental results on simulated data demonstrate the utility of the proposed deflation in terms of component recovery, and evaluation on neuroimaging data show both qualitative and quantitative improvements in the quality of the estimated components. We also present timing experiments on real data to illustrate the importance of sequential estimation with proper deflation for scalability.

Original languageEnglish (US)
Title of host publicationProceedings of the 17th SIAM International Conference on Data Mining, SDM 2017
EditorsNitesh Chawla, Wei Wang
PublisherSociety for Industrial and Applied Mathematics Publications
Number of pages9
ISBN (Electronic)9781611974874
StatePublished - 2017
Event17th SIAM International Conference on Data Mining, SDM 2017 - Houston, United States
Duration: Apr 27 2017Apr 29 2017

Publication series

NameProceedings of the 17th SIAM International Conference on Data Mining, SDM 2017


Other17th SIAM International Conference on Data Mining, SDM 2017
Country/TerritoryUnited States

ASJC Scopus subject areas

  • Software
  • Computer Science Applications


Dive into the research topics of 'A deflation method for structured probabilistic PCA'. Together they form a unique fingerprint.

Cite this