A Deep Learning Approach for Grading of Motor Impairment Severity in Parkinson's Disease

Prithvi Prakash, Rachneet Kaur, Joshua Levy, Richard Sowers, James Brašić, Manuel E. Hernandez

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Objective and quantitative monitoring of movement impairments is crucial for detecting progression in neurological conditions such as Parkinson's disease (PD). This study examined the ability of deep learning approaches to grade motor impairment severity in a modified version of the Movement Disorders Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) using low-cost wearable sensors. A convolutional neural network architecture, XceptionTime, was used to classify lower and higher levels of motor impairment in persons with PD, across five distinct rhythmic tasks: finger tapping, hand movements, pronation-supination movements of the hands, toe tapping, and leg agility. In addition, an aggregate model was trained on data from all tasks together for evaluating bradykinesia symptom severity in PD. The model performance was highest in the hand movement tasks with an accuracy of 82.6% in the hold-out test dataset; the accuracy for the aggregate model was 79.7%, however, it demonstrated the lowest variability. Overall, these findings suggest the feasibility of integrating low-cost wearable technology and deep learning approaches to automatically and objectively quantify motor impairment in persons with PD. This approach may provide a viable solution for a widely deployable telemedicine solution.

Original languageEnglish (US)
Title of host publication2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350324471
DOIs
StatePublished - 2023
Event45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Sydney, Australia
Duration: Jul 24 2023Jul 27 2023

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023
Country/TerritoryAustralia
CitySydney
Period7/24/237/27/23

Keywords

  • Parkinson's disease
  • deep learning
  • disease severity
  • wearable sensors

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'A Deep Learning Approach for Grading of Motor Impairment Severity in Parkinson's Disease'. Together they form a unique fingerprint.

Cite this