TY - GEN
T1 - A Dataset for Interactive Vision-Language Navigation with Unknown Command Feasibility
AU - Burns, Andrea
AU - Arsan, Deniz
AU - Agrawal, Sanjna
AU - Kumar, Ranjitha
AU - Saenko, Kate
AU - Plummer, Bryan A.
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2022
Y1 - 2022
N2 - Vision-language navigation (VLN), in which an agent follows language instruction in a visual environment, has been studied under the premise that the input command is fully feasible in the environment. Yet in practice, a request may not be possible due to language ambiguity or environment changes. To study VLN with unknown command feasibility, we introduce a new dataset Mobile app Tasks with Iterative Feedback (MoTIF), where the goal is to complete a natural language command in a mobile app. Mobile apps provide a scalable domain to study real downstream uses of VLN methods. Moreover, mobile app commands provide instruction for interactive navigation, as they result in action sequences with state changes via clicking, typing, or swiping. MoTIF is the first to include feasibility annotations, containing both binary feasibility labels and fine-grained labels for why tasks are unsatisfiable. We further collect follow-up questions for ambiguous queries to enable research on task uncertainty resolution. Equipped with our dataset, we propose the new problem of feasibility prediction, in which a natural language instruction and multimodal app environment are used to predict command feasibility. MoTIF provides a more realistic app dataset as it contains many diverse environments, high-level goals, and longer action sequences than prior work. We evaluate interactive VLN methods using MoTIF, quantify the generalization ability of current approaches to new app environments, and measure the effect of task feasibility on navigation performance.
AB - Vision-language navigation (VLN), in which an agent follows language instruction in a visual environment, has been studied under the premise that the input command is fully feasible in the environment. Yet in practice, a request may not be possible due to language ambiguity or environment changes. To study VLN with unknown command feasibility, we introduce a new dataset Mobile app Tasks with Iterative Feedback (MoTIF), where the goal is to complete a natural language command in a mobile app. Mobile apps provide a scalable domain to study real downstream uses of VLN methods. Moreover, mobile app commands provide instruction for interactive navigation, as they result in action sequences with state changes via clicking, typing, or swiping. MoTIF is the first to include feasibility annotations, containing both binary feasibility labels and fine-grained labels for why tasks are unsatisfiable. We further collect follow-up questions for ambiguous queries to enable research on task uncertainty resolution. Equipped with our dataset, we propose the new problem of feasibility prediction, in which a natural language instruction and multimodal app environment are used to predict command feasibility. MoTIF provides a more realistic app dataset as it contains many diverse environments, high-level goals, and longer action sequences than prior work. We evaluate interactive VLN methods using MoTIF, quantify the generalization ability of current approaches to new app environments, and measure the effect of task feasibility on navigation performance.
KW - Mobile apps
KW - Task feasibility
KW - Vision-language navigation
UR - http://www.scopus.com/inward/record.url?scp=85144554555&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85144554555&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-20074-8_18
DO - 10.1007/978-3-031-20074-8_18
M3 - Conference contribution
AN - SCOPUS:85144554555
SN - 9783031200731
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 312
EP - 328
BT - Computer Vision – ECCV 2022 - 17th European Conference, Proceedings
A2 - Avidan, Shai
A2 - Brostow, Gabriel
A2 - Cissé, Moustapha
A2 - Farinella, Giovanni Maria
A2 - Hassner, Tal
PB - Springer
T2 - 17th European Conference on Computer Vision, ECCV 2022
Y2 - 23 October 2022 through 27 October 2022
ER -