A Crucial Role for Side-Chain Conformation in the Versatile Charge Selectivity of Cys-Loop Receptors

Tyler J. Harpole, Claudio F Grosman

Research output: Contribution to journalArticle

Abstract

Whether synaptic transmission is excitatory or inhibitory depends, to a large extent, on whether the ion channels that open upon binding the released neurotransmitter conduct cations or anions. The mechanistic basis of the opposite charge selectivities of Cys-loop receptors has only recently begun to emerge. It is now clear that ionized side chains—whether pore-facing or buried—in the first α-helical turn of the second transmembrane segments underlie this phenomenon and that the electrostatics of backbone atoms are not critically involved. Moreover, on the basis of electrophysiological observations, it has recently been suggested that not only the sign of charged side chains but also their conformation are crucial determinants of cation-anion selectivity. To challenge these ideas with the chemical and structural rigor that electrophysiological observations naturally lack, we performed molecular dynamics, Brownian dynamics, and electrostatics calculations of ion permeation. To this end, we used structural models of the open-channel conformation of the α1 glutamate-gated Cl channel and the α1 glycine receptor. Our results provided full support to the notion that the conformation of charged sides chains matters for charge selectivity. Indeed, whereas some rotamers of the buried arginines at position 0′ conferred high selectivity for anions, others supported the permeation of cations and anions at similar rates or even allowed the faster permeation of cations. Furthermore, we found that modeling glutamates at position −1′ of the anion-selective α1 glycine receptor open-state structure—instead of the five native alanines—switches charge selectivity also in a conformation-dependent manner, with some glutamate rotamers being much more effective at conferring selectivity for cations than others. Regarding pore size, we found that the mere expansion of the pore has only a minimal impact on cation-anion selectivity. Overall, these results bring to light the previously unappreciated impact of side-chain conformation on charge selectivity in Cys-loop receptors.

Original languageEnglish (US)
Pages (from-to)1667-1681
Number of pages15
JournalBiophysical journal
Volume116
Issue number9
DOIs
StatePublished - May 7 2019

Fingerprint

Cysteine Loop Ligand-Gated Ion Channel Receptors
Anions
Cations
Glycine Receptors
Static Electricity
Glutamic Acid
Glutamates
Structural Models
Molecular Dynamics Simulation
Ion Channels
Synaptic Transmission
Neurotransmitter Agents
Arginine
Ions

ASJC Scopus subject areas

  • Biophysics

Cite this

A Crucial Role for Side-Chain Conformation in the Versatile Charge Selectivity of Cys-Loop Receptors. / Harpole, Tyler J.; Grosman, Claudio F.

In: Biophysical journal, Vol. 116, No. 9, 07.05.2019, p. 1667-1681.

Research output: Contribution to journalArticle

@article{7863c531d5674312b166550d246de2eb,
title = "A Crucial Role for Side-Chain Conformation in the Versatile Charge Selectivity of Cys-Loop Receptors",
abstract = "Whether synaptic transmission is excitatory or inhibitory depends, to a large extent, on whether the ion channels that open upon binding the released neurotransmitter conduct cations or anions. The mechanistic basis of the opposite charge selectivities of Cys-loop receptors has only recently begun to emerge. It is now clear that ionized side chains—whether pore-facing or buried—in the first α-helical turn of the second transmembrane segments underlie this phenomenon and that the electrostatics of backbone atoms are not critically involved. Moreover, on the basis of electrophysiological observations, it has recently been suggested that not only the sign of charged side chains but also their conformation are crucial determinants of cation-anion selectivity. To challenge these ideas with the chemical and structural rigor that electrophysiological observations naturally lack, we performed molecular dynamics, Brownian dynamics, and electrostatics calculations of ion permeation. To this end, we used structural models of the open-channel conformation of the α1 glutamate-gated Cl − channel and the α1 glycine receptor. Our results provided full support to the notion that the conformation of charged sides chains matters for charge selectivity. Indeed, whereas some rotamers of the buried arginines at position 0′ conferred high selectivity for anions, others supported the permeation of cations and anions at similar rates or even allowed the faster permeation of cations. Furthermore, we found that modeling glutamates at position −1′ of the anion-selective α1 glycine receptor open-state structure—instead of the five native alanines—switches charge selectivity also in a conformation-dependent manner, with some glutamate rotamers being much more effective at conferring selectivity for cations than others. Regarding pore size, we found that the mere expansion of the pore has only a minimal impact on cation-anion selectivity. Overall, these results bring to light the previously unappreciated impact of side-chain conformation on charge selectivity in Cys-loop receptors.",
author = "Harpole, {Tyler J.} and Grosman, {Claudio F}",
year = "2019",
month = "5",
day = "7",
doi = "10.1016/j.bpj.2019.03.022",
language = "English (US)",
volume = "116",
pages = "1667--1681",
journal = "Biophysical Journal",
issn = "0006-3495",
publisher = "Biophysical Society",
number = "9",

}

TY - JOUR

T1 - A Crucial Role for Side-Chain Conformation in the Versatile Charge Selectivity of Cys-Loop Receptors

AU - Harpole, Tyler J.

AU - Grosman, Claudio F

PY - 2019/5/7

Y1 - 2019/5/7

N2 - Whether synaptic transmission is excitatory or inhibitory depends, to a large extent, on whether the ion channels that open upon binding the released neurotransmitter conduct cations or anions. The mechanistic basis of the opposite charge selectivities of Cys-loop receptors has only recently begun to emerge. It is now clear that ionized side chains—whether pore-facing or buried—in the first α-helical turn of the second transmembrane segments underlie this phenomenon and that the electrostatics of backbone atoms are not critically involved. Moreover, on the basis of electrophysiological observations, it has recently been suggested that not only the sign of charged side chains but also their conformation are crucial determinants of cation-anion selectivity. To challenge these ideas with the chemical and structural rigor that electrophysiological observations naturally lack, we performed molecular dynamics, Brownian dynamics, and electrostatics calculations of ion permeation. To this end, we used structural models of the open-channel conformation of the α1 glutamate-gated Cl − channel and the α1 glycine receptor. Our results provided full support to the notion that the conformation of charged sides chains matters for charge selectivity. Indeed, whereas some rotamers of the buried arginines at position 0′ conferred high selectivity for anions, others supported the permeation of cations and anions at similar rates or even allowed the faster permeation of cations. Furthermore, we found that modeling glutamates at position −1′ of the anion-selective α1 glycine receptor open-state structure—instead of the five native alanines—switches charge selectivity also in a conformation-dependent manner, with some glutamate rotamers being much more effective at conferring selectivity for cations than others. Regarding pore size, we found that the mere expansion of the pore has only a minimal impact on cation-anion selectivity. Overall, these results bring to light the previously unappreciated impact of side-chain conformation on charge selectivity in Cys-loop receptors.

AB - Whether synaptic transmission is excitatory or inhibitory depends, to a large extent, on whether the ion channels that open upon binding the released neurotransmitter conduct cations or anions. The mechanistic basis of the opposite charge selectivities of Cys-loop receptors has only recently begun to emerge. It is now clear that ionized side chains—whether pore-facing or buried—in the first α-helical turn of the second transmembrane segments underlie this phenomenon and that the electrostatics of backbone atoms are not critically involved. Moreover, on the basis of electrophysiological observations, it has recently been suggested that not only the sign of charged side chains but also their conformation are crucial determinants of cation-anion selectivity. To challenge these ideas with the chemical and structural rigor that electrophysiological observations naturally lack, we performed molecular dynamics, Brownian dynamics, and electrostatics calculations of ion permeation. To this end, we used structural models of the open-channel conformation of the α1 glutamate-gated Cl − channel and the α1 glycine receptor. Our results provided full support to the notion that the conformation of charged sides chains matters for charge selectivity. Indeed, whereas some rotamers of the buried arginines at position 0′ conferred high selectivity for anions, others supported the permeation of cations and anions at similar rates or even allowed the faster permeation of cations. Furthermore, we found that modeling glutamates at position −1′ of the anion-selective α1 glycine receptor open-state structure—instead of the five native alanines—switches charge selectivity also in a conformation-dependent manner, with some glutamate rotamers being much more effective at conferring selectivity for cations than others. Regarding pore size, we found that the mere expansion of the pore has only a minimal impact on cation-anion selectivity. Overall, these results bring to light the previously unappreciated impact of side-chain conformation on charge selectivity in Cys-loop receptors.

UR - http://www.scopus.com/inward/record.url?scp=85064313326&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85064313326&partnerID=8YFLogxK

U2 - 10.1016/j.bpj.2019.03.022

DO - 10.1016/j.bpj.2019.03.022

M3 - Article

C2 - 31005237

AN - SCOPUS:85064313326

VL - 116

SP - 1667

EP - 1681

JO - Biophysical Journal

JF - Biophysical Journal

SN - 0006-3495

IS - 9

ER -