A Crowd-AI Collaborative Duo Relational Graph Learning Framework towards Social Impact Aware Photo Classification

Yang Zhang, Ziyi Kou, Lanyu Shang, Huimin Zeng, Zhenrui Yue, Dong Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In artificial intelligence (AI), negative social impact (NSI) represents the negative effect on the society as a result of mistakes conducted by AI agents. While the photo classification problem has been widely studied in the AI community, the NSI made by photo misclassification is largely ignored due to the lack of quantitative measurements of the NSI and effective approaches to reduce it. In this paper, we focus on an NSI-aware photo classification problem where the goal is to develop a novel crowd-AI collaborative learning framework that leverages online crowd workers to quantitatively estimate and effectively reduce the NSI of misclassified photos. Our problem is motivated by the limitations of current NSI-aware photo classification approaches that either 1) cannot accurately estimate NSI because they simply model NSI as the semantic difference between true and misclassified categories or 2) require costly human annotations to estimate NSI of pairwise class categories. To address such limitations, we develop SocialCrowd, a crowdsourcing-based NSI-aware photo classification framework that explicitly reduces the NSI of photo misclassification by designing a duo relational NSI-aware graph with the NSI estimated by online crowd workers. The evaluation results on two large-scale image datasets show that SocialCrowd not only reduces the NSI of photo misclassification but also improves the classification accuracy on both datasets.

Original languageEnglish (US)
Title of host publicationAAAI-23 Special Tracks
EditorsBrian Williams, Yiling Chen, Jennifer Neville
PublisherAmerican Association for Artificial Intelligence (AAAI) Press
Pages14637-14645
Number of pages9
ISBN (Electronic)9781577358800
StatePublished - Jun 27 2023
Event37th AAAI Conference on Artificial Intelligence, AAAI 2023 - Washington, United States
Duration: Feb 7 2023Feb 14 2023

Publication series

NameProceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Volume37

Conference

Conference37th AAAI Conference on Artificial Intelligence, AAAI 2023
Country/TerritoryUnited States
CityWashington
Period2/7/232/14/23

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'A Crowd-AI Collaborative Duo Relational Graph Learning Framework towards Social Impact Aware Photo Classification'. Together they form a unique fingerprint.

Cite this