A Controller Hardware-in-the-Loop Testbed: Verification and Validation of Microgrid Control Architectures

Siddhartha Nigam, Olaoluwapo Ajala, Alejandro D. Dominguez-Garcia

Research output: Contribution to specialist publicationArticle

Abstract

The past decade has seen a sharp rise in the deployment of distributed energy resources (DERs) in power distribution grids across the globe owing to their numerous benefits. These benefits are attributed to the close proximity of deployed DERs and loads, and they include the improvement of the reliability of the electricity supply, reduction in electricity supply costs, strengthened security against physical/cyber threats, the facilitation of renewable energy integration, and a reduction in the carbon footprint. As the underlying technologies improve, mature, and become more cost-effective, DERs are projected to continue to experience a growing adoption rate. Along with the rise of DERs came the microgrid concept, which has been shown to be a promising approach for effectively managing DERs in power distribution grids. Loosely speaking, a microgrid is a group of interconnected loads and DERs within a small geographical footprint with clearly defined electrical boundaries that act as a single controllable entity with respect to the external grid to which it is connected. Over the years, several microgrid control architectures have been proposed to optimally utilize the myriad of benefits presented by the growing numbers of DERs deployed in power distribution networks.

Original languageEnglish (US)
Pages92-100
Number of pages9
Volume8
No3
Specialist publicationIEEE Electrification Magazine
DOIs
StatePublished - Sep 2020

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'A Controller Hardware-in-the-Loop Testbed: Verification and Validation of Microgrid Control Architectures'. Together they form a unique fingerprint.

Cite this