A Control Architecture of a Distributed Actuator System for a Bio-Inspired Spine

Bonhyun Ku, Arijit Banerjee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Control of an articulated spine is important for humanoids' dynamic and balanced motion. Although there have been many spinal structures for humanoids, their actuation is still limited due to the usage of geared motors for joints. This paper introduces position control of a distributed electrome-chanical spine in a vertical plane. The spine dynamics model is approximated as an open chain. Gravitational and spring torques are compensated for the control. Moreover, torque-to-current conversion for the actuator is developed. Experimental results show the implemented control of the electromechanical spine for undulatory motions.

Original languageEnglish (US)
Title of host publicationIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5781-5786
Number of pages6
ISBN (Electronic)9781665479271
DOIs
StatePublished - 2022
Externally publishedYes
Event2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 - Kyoto, Japan
Duration: Oct 23 2022Oct 27 2022

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2022-October
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
Country/TerritoryJapan
CityKyoto
Period10/23/2210/27/22

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'A Control Architecture of a Distributed Actuator System for a Bio-Inspired Spine'. Together they form a unique fingerprint.

Cite this