TY - GEN
T1 - A continuous-time distributed algorithm for solving linear equations
AU - Liu, Ji
AU - Chen, Xudong
AU - Baar, Tamer
AU - Nedic, Angelia
N1 - Publisher Copyright:
© 2016 American Automatic Control Council (AACC).
PY - 2016/7/28
Y1 - 2016/7/28
N2 - A continuous-time distributed algorithm is studied for solving linear equations of the form Ax = b with at least one solution. The equation is simultaneously solved by a network of m agents with the assumption that each agent knows only a subset of the rows of the partitioned matrix [A b ], the current estimates of the equation's solution generated by its current neighbors, and nothing more. Neighbor relationships among the agents are described by a piecewise-constant switching directed graph whose vertices correspond to agents and whose arcs depict neighbor relationships. It is shown that for any matrix-vector pair (A, b) for which the equation has a solution and any sequence of repeatedly jointly strongly connected graphs, the algorithm causes all agents' estimates to asymptotically converge to the same solution to Ax = b. The limiting behavior of the algorithm in the case when Ax = b does not have a solution is also studied. It is shown that for any static strongly connected graph, the algorithm causes all agents' estimates to asymptotically converge to different values, and therefore enables the agents to detect the no-solution case distributively.
AB - A continuous-time distributed algorithm is studied for solving linear equations of the form Ax = b with at least one solution. The equation is simultaneously solved by a network of m agents with the assumption that each agent knows only a subset of the rows of the partitioned matrix [A b ], the current estimates of the equation's solution generated by its current neighbors, and nothing more. Neighbor relationships among the agents are described by a piecewise-constant switching directed graph whose vertices correspond to agents and whose arcs depict neighbor relationships. It is shown that for any matrix-vector pair (A, b) for which the equation has a solution and any sequence of repeatedly jointly strongly connected graphs, the algorithm causes all agents' estimates to asymptotically converge to the same solution to Ax = b. The limiting behavior of the algorithm in the case when Ax = b does not have a solution is also studied. It is shown that for any static strongly connected graph, the algorithm causes all agents' estimates to asymptotically converge to different values, and therefore enables the agents to detect the no-solution case distributively.
UR - http://www.scopus.com/inward/record.url?scp=84992093392&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84992093392&partnerID=8YFLogxK
U2 - 10.1109/ACC.2016.7526540
DO - 10.1109/ACC.2016.7526540
M3 - Conference contribution
AN - SCOPUS:84992093392
T3 - Proceedings of the American Control Conference
SP - 5551
EP - 5556
BT - 2016 American Control Conference, ACC 2016
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2016 American Control Conference, ACC 2016
Y2 - 6 July 2016 through 8 July 2016
ER -