TY - JOUR
T1 - A conjecture of R. R. Hall on Farey points
AU - Boca, Florin P.
AU - Cobeli, Cristian
AU - Zaharescu, Alexandru
PY - 2001
Y1 - 2001
N2 - Let I = (α, β] ⊆ (0, 1] be an interval, let γ1, < γ2 < ⋯ < γNI(Q) denote the Farey fractions of order Q from I and set Sr(Q) = ∑j=1NI(Q) (γj+1 - γj)(γj+r+1 - γj+r) for r ≧ 0. We prove that, for all r ≧ 2, there exists a constant Ir such that the following asymptotic formula holds: Sr(Q) = Sr(Q, (0,1)] = 6Ir/π2 Q2 + Or (log 1/(r+3)Q/Q2+1/(r+3) This implies, for all h ≧ 3, the existence of a constant D(h) such that ∑j=1N(0,1)(Q) (γj+h-γj)2 = 12(2h-1) logQ/π2 Q2 + D(h)/Q2 + Oh(log1/(h+2) Q/Q2+1/(h+2)) providing a positive answer to a conjecture of R. R. Hall. Furthermore, we prove that, for any r ≧ 2 and any such interval I, the sums Sr(Q, I) and Sr(Q) are related by Sr(Q, I) = |I|Sr(Q) + Oε(Q-2-1/(2r+4)+ε). For r ∈ {0, 1} we prove, for any I with rational end points, the existence of a constant cI such that S0(Q,I) = |I|S0(Q) + 2CI/Q2 + Oε(Q-2-1/10+ε) and S1(Q,I) = |I|SI(Q) + CI/Q2 + Oε(Q-2-1/12+ε).
AB - Let I = (α, β] ⊆ (0, 1] be an interval, let γ1, < γ2 < ⋯ < γNI(Q) denote the Farey fractions of order Q from I and set Sr(Q) = ∑j=1NI(Q) (γj+1 - γj)(γj+r+1 - γj+r) for r ≧ 0. We prove that, for all r ≧ 2, there exists a constant Ir such that the following asymptotic formula holds: Sr(Q) = Sr(Q, (0,1)] = 6Ir/π2 Q2 + Or (log 1/(r+3)Q/Q2+1/(r+3) This implies, for all h ≧ 3, the existence of a constant D(h) such that ∑j=1N(0,1)(Q) (γj+h-γj)2 = 12(2h-1) logQ/π2 Q2 + D(h)/Q2 + Oh(log1/(h+2) Q/Q2+1/(h+2)) providing a positive answer to a conjecture of R. R. Hall. Furthermore, we prove that, for any r ≧ 2 and any such interval I, the sums Sr(Q, I) and Sr(Q) are related by Sr(Q, I) = |I|Sr(Q) + Oε(Q-2-1/(2r+4)+ε). For r ∈ {0, 1} we prove, for any I with rational end points, the existence of a constant cI such that S0(Q,I) = |I|S0(Q) + 2CI/Q2 + Oε(Q-2-1/10+ε) and S1(Q,I) = |I|SI(Q) + CI/Q2 + Oε(Q-2-1/12+ε).
UR - http://www.scopus.com/inward/record.url?scp=0035592925&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035592925&partnerID=8YFLogxK
U2 - 10.1515/crll.2001.049
DO - 10.1515/crll.2001.049
M3 - Article
AN - SCOPUS:0035592925
VL - 535
SP - 207
EP - 236
JO - Journal fur die Reine und Angewandte Mathematik
JF - Journal fur die Reine und Angewandte Mathematik
SN - 0075-4102
ER -